Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) để M nguyên thì \(\frac{x+2}{3}\in Z\)
\(\Rightarrow x+2⋮3\)
\(\Rightarrow\)x + 2 \(\in\)B ( 3 ) = { ... ; -9 ; -6 ; -3 ; 0 ; 3 ; 6 ; 9 ; ... }
\(\Rightarrow\)x = { ... ; -11 ; -8 ; -5 ; -2 ; 1 ; 4 ; 7 ; ... }
b) để N nguyên thì \(\frac{7}{x-1}\)nguyên
\(\Rightarrow7⋮x-1\)
\(\Rightarrow x-1\inƯ\left(7\right)=\left\{1;7;-1;-7\right\}\)
Lập bảng ta có :
x-1 | 1 | 7 | -1 | -7 |
x | 2 | 8 | 0 | -6 |
Ta có :
\(2n-1=2n-8+7=2\left(n-4\right)+7\) chia hết cho \(n-4\)\(\Rightarrow\)\(7⋮\left(n-4\right)\)\(\Rightarrow\)\(\left(n-4\right)\inƯ\left(7\right)\)
Mà \(Ư\left(7\right)=\left\{1;-1;7;-7\right\}\)
Suy ra :
\(n-4\) | \(1\) | \(-1\) | \(7\) | \(-7\) |
\(n\) | \(5\) | \(3\) | \(11\) | \(-3\) |
Vậy \(n\in\left\{5;3;11;-3\right\}\)
Năm mới zui zẻ ^^
Chia dãy các số nguyên dương từ 1 đến 2020 thành 202 đoạn (1;10) (11;20) ... (2011;2020).
Vì A có 607 số nguyên dương khác nhau chia thành 202 đoạn nên theo nguyên lí Đi - Rich - Lê tồn tại ít nhất 1 đoạn chứa 4 số trong 607 số trên
Vì trong 4 số trên luôn tồn tại 2 số cùng số dư khi chia cho 3 , gọi 2 số đó là x , y ( x > y )
suy ra x - y chia hết cho 3
Mà x - y < 9
suy ra x , y thuộc (3;6;9)
bài 1:
Mẫu số của phân số đó là : 30 : (23 - 17) x 23 =115
Tử số của phân số đó là : 115 - 30 = 85
=> Phân số cần tìm là : \(\frac{85}{115}\)
Bài 2:
a) với mọi n
b) \(A=\frac{8n+21}{2n+6}=\frac{8n+24-3}{2n+6}=\frac{4.\left(2n+6\right)-3}{2n+6}=\frac{4\left(2n+6\right)}{2n+6}-\frac{3}{2n+6}\) = \(4-\frac{3}{2n+6}\)
Để A thuộc Z thì \(\frac{3}{2n+6}\in Z\Rightarrow3⋮2n+6\) \(\Rightarrow2n+6\) \(\inƯ\left(3\right)\) \(=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow n\in\left\{-\frac{9}{2};-\frac{7}{2};-\frac{5}{2};-\frac{3}{2}\right\}\)
mà n \(\in Z\Rightarrow n\in\) rỗng.
\(\frac{a}{b}\)=\(\frac{17}{23}\)=> 23a = 17b (1)
Mà a-b = 30 => a = 30+b
Thay vào (1) => 23(30+b)=17b
<=> b=-115
=> a= -85
Phân số đó là \(\frac{-85}{-115}\)