\(\overline{ab}\)

biết \(\left(a+b\right)\times8=\overline...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2016

8a+8b=10a+b+8 <=> 7b=2a+8=(2a+1)+7 =>b=\(\frac{2a+1}{7}\)+1

Do 2a+1 phải chia hết cho 7 và 0\(\le a\le9\)nên 1\(\le2a+1\le19\). Vậy:

+/ 2a+1 = 7 => a=3 và b=2 (chọn)

+/ 2a+1=14 => a=13/2 (loại)

Vậy: ab=32

20 tháng 12 2017

b, 1028+8 chia hết cho 9

1028+8=(1027*10)+8=10009+8 chia hết cho 8

(8,9)=1 nên 1028+8 chia hết cho 27

Ta có : abcdeg = ab.10000 + cd.100 + eg 

                         = ab.9999 + cd.99 + (ab + cd + eg)

                         = 99(ab.101 + cd) + (ab + cd + eg)

Vì 99(ab.101 + cd) chia hết cho 11 và  (ab + cd + eg) chia hết cho 11

Vậy abcdeg chia hết cho 11

3 tháng 4 2018

a) Ta có : abcdeg = ab . 10000 + cd . 100 + eg 

                             = ab . 9999 + ab + cd . 99 + cd + eg

                             = ab . 11 . 909 + ab + cd . 11 . 9 + cd + eg

                              = (ab . 909 + cd . 9) . 11 + (ab + cd + eg)

  Vì (ab . 909 + cd .9) . 11 ⋮ 11 và (ab + cd + eg) ⋮ 11 nên abcdeg ⋮ 11

14 tháng 1 2019

\(A=1+5+5^2+5^3+...+5^{2011}\)

\(5A=5+5^2+5^3+...+5^{2012}\)

=>\(5A-A=5^{2012}-1\Rightarrow A=\frac{5^{2012}-1}{4}\)

Phương trình ban đầu tương đương với: \(\frac{5^{2012}-1}{4}\left|x-1\right|=5^{2012}-1\)

\(\Leftrightarrow\left|x-1\right|=4\Leftrightarrow\orbr{\begin{cases}x-1=4\\x-1=-4\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=-3\end{cases}}\)

22 tháng 5 2017

Đăng từ từ từng câu thoy bn!!

8 tháng 8 2018

Ta có : \(\overline{ab}+\overline{ba}=10a+b+10b+a\)

                             \(=11\left(a+b\right)\)

và 33 = 11 .

mà \(a+b\)không chia hết cho 3

Nên (\(\left(\overline{ab}+\overline{ba};33\right)=11\)

29 tháng 12 2018

 = 11

ti-ck cho ntn này

nhé

11 tháng 12 2022

a: Nếu a chẵn, b chẵn thì ab(a+b)=2k*2c*(2k+2c)=4kc(2k+2c) chia hết cho 2

Nếu a,b ko cùng tính chẵn lẻ thì 

ab(a+b)=2k(2c+1)(2k+2c+1) chia hết cho 2

Nếu a,b lẻ thì (a+b) chia hết cho 2

=>ab(a+b) chia hết cho 2

b: \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9\)