K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2018

ta có : \(\frac{-n+2}{n-1}=\frac{-\left(n-1\right)+1}{n-1}=\frac{-\left(n-1\right)}{n-1}+\frac{1}{n-1}=-1+\frac{1}{n-1}\)

để \(\frac{-n+2}{n-1}\in z\Rightarrow\frac{1}{n-1}\in z\)

\(\Rightarrow1⋮n-1\Rightarrow n-1\inƯ_{\left(1\right)}=\left(1;-1\right)\)

nếu n-1 =1 => n= 2 (TM)

n-1     =-1 => n= 0 (TM)

KL: n= 2; n=0

Chúc bn học tốt!!

25 tháng 4 2018

Bài 1

2.|x+1|-3=5

2.|x+1|   =8

|x+1|     =4

=>x+1=4 hoặc x+1=-4

<=>x= 3 hoặc -5

Bài 3

     A=2/n-1

Để A có giá trị nguyên thì n là

2 phải chia hết cho n-1

U(2)={1,2,-1,-2}

Vậy A là số nguyên khi n=2;3;0;-1

k mk nha. Chúc bạn học giỏi

Thank you

25 tháng 4 2018

bài 1 :

\(2\cdot|x+1|-3=5\)

\(2\cdot|x+1|=5+3\)

\(2\cdot|x+1|=8\)

\(|x+1|=8\div2\)

\(|x+1|=4\)

\(x=4-3\)

\(x=3\Rightarrow|x|=3\)

bài 2 : có 2 trường hợp để \(n\in Z\)là \(A=2\)và \(A=4\)

TH1:

 \(2=\frac{n+1}{n-2}\Rightarrow2=\frac{6}{3}\left(n\in Z\right)\)

\(2=\frac{n+1}{n-2}\Rightarrow2=\frac{6-1}{3+2}=5\)

\(\Rightarrow n=5\)

TH2

\(4=\frac{n+1}{n-2}\Rightarrow4=\frac{4}{1}\left(n\in Z\right)\)

\(\Rightarrow4=\frac{4-1}{1+2}=3\)

\(\Rightarrow n=3\)

\(n\in\left\{5;3\right\}\left(n\in Z\right)\)

Bài 3  có 2 trường hợp là \(A=1\)và \(A=2\)

TH1:

\(1=\frac{2}{n-1}\Rightarrow1=\frac{2}{2}\)

\(1=\frac{2}{2+1}=3\)

\(\Rightarrow n=3\)

TH2 : 

\(2=\frac{2}{n-1}\Rightarrow2=\frac{2}{1}\)

\(2=\frac{2}{1+1}=2\)

\(\Rightarrow n=2\)

vậy \(\Rightarrow n\in\left\{3;2\right\}\)

23 tháng 6 2017

điều kiện là n+2 khác 0

23 tháng 6 2017

để B là p/số thì n+1;n-2 thuộc Z  (n-2 # 0)

=>n # 0 + 2

=> n # 2 thù B là p/số

vậy..

5 tháng 5 2019

Để A là phân số thì ta có điều kiện \(n-1\ne0\Rightarrow n\ne1\) . Vậy điều kiện của n là \(n\ne1\)

Để A là số nguyên => \(n-1\inƯ(5)=\left\{\pm1;\pm5\right\}\)

\(n-1\)\(1\)\(-1\)\(5\)\(-5\)
\(n\)\(2\)\(0\)\(6\)\(-4\)
22 tháng 4 2017

Để \(\frac{n^2+n+2}{n+1}\) có giá trị là số nguyên thì \(\left(n^2+n+2\right)⋮\left(n+1\right)\)

Ta có : n2 + n + 2 = n x n + n + 2 = n x ( n + 1 ) + 2

=> n x ( n + 1 ) + 2 chia hết cho n + 1

Ta thấy : n x ( n + 1 ) chia hết cho n + 1

=> 2 chia hết cho n + 1

Hay \(\left(n+1\right)\inƯ_2\)

Ư(2) = { 1 ; -1 ; 2 ; -2 }

Ta có bảng sau :

n + 11-12-2
n0-21-3

Vậy để A có giá trị là số nguyên thì \(n\in\) { 0 ; -2 ; 1 ; -3 }

22 tháng 4 2017

Để \(A\in Z\)thì \(n^2+n+2⋮n+1\)

\(\Rightarrow n\left(n+1\right)+2⋮n+1\)

\(\Rightarrow2⋮n+1\)

\(\Rightarrow n+1\left\{-2;2;-1;1\right\}\)

\(\Rightarrow n\in\left\{-3;1;-2;0\right\}\)

11 tháng 4 2019

để \(\frac{n^2+n-5}{n+2}\)nguyên \(\Leftrightarrow n^2+n-5⋮n+2\)

                                            \(\Leftrightarrow n^2+2n-n-5⋮n+2\)

                                            \(\Leftrightarrow n.\left(n+2\right)-n-5⋮n+2\)

                                     mà         \(n.\left(n+2\right)⋮n+2\)

\(\Rightarrow n-5⋮n+2\)

\(\Rightarrow n+2-7⋮n+2\)

 mà \(n+2⋮n+2\)

\(\Rightarrow7⋮n+2\)

em tự làm típ nhé 

11 tháng 4 2019

Điều kiện xác định:\(n\ne-2\)

Ta có:

\(\frac{n^2+n-5}{n+2}=\left(n-1\right)-\frac{3}{n+2}\) (chia đa thức, có \(-\frac{3}{n+2}\)vì chia dư -3)

Để \(\frac{n^2+n-5}{n+2}\) là số nguyên

=> \(3⋮n+2\)

=>\(\left(n+2\right)\inƯ\left(3\right)\)

=>\(\left(n+2\right)\in\left\{-3;-1;1;3\right\};n\in Z\)

=>\(n\in\left\{-5;-3;-1;1\right\}\)

17 tháng 5 2019

Để A là số nguyên

 \(\Leftrightarrow n+1⋮n-2\)

\(\Leftrightarrow n-2+3⋮n-2\)

mà \(n-2⋮n-2\)

\(\Rightarrow3⋮n-2\)

\(\Rightarrow n-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

tự tìm n 

17 tháng 5 2019

\(A=\frac{n+1}{n-2}=\frac{\left(n-2\right)+3}{n-2}\)

                         \(=1+\frac{3}{n-2}\)

Để \(A\)là số nguyên thì \(1+\frac{3}{n-2}\in Z\)hay \(\frac{3}{n-2}\in Z\Rightarrow3⋮n-2\)

\(\Leftrightarrow n-2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\Rightarrow n\in\left\{-1;1;3;5\right\}.\)