\(n\in z\)sao cho giá trị của đa thức\(2n^2-7n+4\) chia h...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2018

\(2n^2-7n+4⋮2n+1\)

\(2n^2+n-8n-4+8⋮2n+1\)

\(n\left(2n+1\right)-4\left(2n+1\right)+8⋮2n+1\)

\(\left(2n+1\right)\left(n-4\right)+8⋮2n+1\)

Vì \(\left(2n+1\right)\left(n-4\right)⋮2n+1\)

\(\Rightarrow8⋮2n+1\)

\(\Rightarrow2n+1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

Mà n thuộc Z và 2n + 1 là số lẻ nên \(2n+1\in\left\{\pm1\right\}\)

\(\Rightarrow n\in\left\{0;-1\right\}\)

Vậy..........

19 tháng 10 2019

c) Cách 1:

x^4+3x^3-x^2+ax+b x^2+2x-3 x^2+x x^4+2x^3-3x^2 - x^3+2x^2+ax+b x^3+2x^2-3x - (a+3)x+b

Để \(P\left(x\right)⋮Q\left(x\right)\)

\(\Leftrightarrow\left(a+3\right)x+b=0\)

\(\Leftrightarrow\hept{\begin{cases}a+3=0\\b=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-3\\b=0\end{cases}}\)

Vậy a=-3 và b=0 để \(P\left(x\right)⋮Q\left(x\right)\)

19 tháng 10 2019

a) 

  2n^2-n+2 2n+1 n-1 2x^2+n - -2n+2 -2n-1 - 3

Để \(2n^2-n+2⋮2n+1\)

\(\Leftrightarrow3⋮2n+1\)

\(\Leftrightarrow2n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Leftrightarrow n\in\left\{0;1;-2;-1\right\}\)

Vậy \(n\in\left\{0;1;-2;-1\right\}\)để \(2n^2-n+2⋮2n+1\)

19 tháng 10 2019

a) ta có (2n2-n+2)/(2n+1)=n-1(dư 3)

vậy muốn 2n2-n+2 chia hết cho 2n+1 thì 2n+1ϵƯ(3)

mà Ư(3)={-3;-1;1;3}

nên

2n+1=-3 và 2n+1=-1 và 2n+1=1 và 2n+1=3

=> 2n=-4 và 2n=-2 và 2n=0 và 2n=2

=> n=-2 và n=-1 và n=0 và n=1

vậy nϵ{-2;-1;0;1}

b) ta có x3+x2-x+a/(x+1)2=x-1(dư -x2-2x+a)

\(x^2-2x+a-\left(-x^2-2x-1\right)=a+1\)

và muốn \(x^3+x^2-x+a\) chia hết cho \(\left(x+1\right)^2\)thì a+1=0

=> a=-1

AH
Akai Haruma
Giáo viên
17 tháng 10 2018

Lời giải:

a)

\(2(x+3)-x^2-3x=0\)

\(\Leftrightarrow 2(x+3)-(x^2+3x)=0\)

\(\Leftrightarrow 2(x+3)-x(x+3)=0\Leftrightarrow (2-x)(x+3)=0\)

\(\Rightarrow \left[\begin{matrix} 2-x=0\\ x+3=0\end{matrix}\right.\Rightarrow\left[\begin{matrix} x=2\\ x=-3\end{matrix}\right.\)

b)

Theo định lý Bê-du về phép chia đa thức thì để đa thức đã cho chia hết cho $3x-1$ thì:

\(f(\frac{1}{3})=3.(\frac{1}{3})^3+2(\frac{1}{3})^2-7.\frac{1}{3}+a=0\)

\(\Leftrightarrow -2+a=0\Leftrightarrow a=2\)

c) Ta có:

\(2n^2+3n+3\vdots 2n-1\)

\(\Leftrightarrow 2n^2-n+4n+3\vdots 2n-1\)

\(\Leftrightarrow n(2n-1)+(4n-2)+5\vdots 2n-1\)

\(\Leftrightarrow n(2n-1)+2(2n-1)+5\vdots 2n-1\)

\(\Leftrightarrow 5\vdots 2n-1\Rightarrow 2n-1\in \text{Ư}(5)\)

\(\Rightarrow 2n-1\in\left\{\pm 1; \pm 5\right\}\Rightarrow n\in\left\{0; 1; 3; -2\right\}\)

Vậy.................

Định lý Bê-du là j ?

4 tháng 10 2019

2. Ta có: P = 2x2 + y2 - 4x - 4y + 10

P = 2(x2 - 2x + 1) + (y2 - 4y + 4) + 4

P = 2(x - 1)2 + (y - 2)2 + 4 \(\ge\)\(\forall\)x;y

=> P luôn dương với mọi biến x;y

3 Ta có:

(2n + 1)(n2 - 3n - 1) - 2n3 + 1

= 2n3 - 6n2 - 2n + n2 - 3n - 1 - 2n3 + 1

= -5n2 - 5n = -5n(n + 1) \(⋮\)\(\forall\)\(\in\)Z

20 tháng 4 2020

1×2=2

27 tháng 2 2017

\(A=3x^2\left(4x-5\right)+2x\left(4x-5\right)-\left(4x-5\right)+9\)

\(A=\left(4x-5\right)\left(3x^2+2x-1\right)+9\)

vậy 4x-5 là ước của 9.

x<0=> 4x-5=-9=> x=-1

p/s: Cách tốt nhất để nó không xuất hiện khi nhất chưa ai giải

29 tháng 12 2018

Đặt \(f\left(x\right)=x^2+3x+a\)

    \(g\left(x\right)=x-5\)

Vì f(x) chia hết cho g(x) nên

\(f\left(x\right)=q\left(x\right).g\left(x\right)\)

\(\Leftrightarrow x^2+3x+a=q\left(x\right).\left(x-5\right)\)

Tại x = 5 thì

\(5^2+3.5+a=0\)

\(\Leftrightarrow a=-40\)

Vậy a = -40

29 tháng 12 2018

Ta có:\(x^2+3x+a=\left(x+5\right)\left(x+8\right)\)  dư a-40

Vậy để \(x^2+3x+a⋮x-5\)Thì a-40=0=>z=40

Vậy để \(x^2+3x+a⋮x-5\)thì a=40

7 tháng 3 2020

Câu 1:

Ta có \(x^3+3x-5=x^3+2x+x-5=\left(x^2+2\right)x+x-5\)

để giá trị của đa thức \(x^3+3x-5\)chia hết cho giá trị của đa thức \(x^2+2\)

thì \(x-5⋮x^2+2\Rightarrow\left(x-5\right)\left(x+5\right)⋮x^2+2\Rightarrow x^2-25⋮x^2+2\)

\(\Leftrightarrow x^2+2-27⋮x^2+2\Rightarrow27⋮x^2+2\)

\(\Leftrightarrow x^2+2\inƯ\left(27\right)\)do \(x^2+2\inℤ,\forall x\inℤ\)

mà \(x^2+2\ge2,\forall x\inℤ\)

\(\Rightarrow x^2+2\in\left\{3;9;27\right\}\)\(\Leftrightarrow x^2\in\left\{1;7;25\right\}\)

mà \(x^2\)là số chính phương \(\forall x\inℤ\)

\(\Rightarrow x^2\in\left\{1;25\right\}\Leftrightarrow x\in\left\{\pm1;\pm5\right\}\)

**bạn nhớ thử lại nhé
\(KL...\)

7 tháng 3 2020

Bạn Minh Tâm ơi giá trị \(\pm1\)sai rồi