\(n\in Z\), để:

\(1+n^{2017}+2^{2018}\) là số nguy...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2021

Đặt A=1+n2017+n2018 

*Nếu: n=1 => A= 1 + 12017 + 12018 = 3 (t/m)

Do đó: A là số nguyên tố

*Nếu: n>1

1+n2017+n2018

 =(n2018-n2)+(n2017-n)+(n2+n+1)

=n2.(n2016-1)+n.(n2016-1)+(n2+n).(n2016-1)+(n2+n+1)

Vì: n2016 chia hết cho n3

=> n2016-1 chia hết cho n3-1

=> n2016-1  chia hết cho (n2+n+1) 

Mà: 1<n2+n+1<A=> A là số nguyên tố  (k/tm đk đề bài số nguyên dương)

Vậy n=1

10 tháng 2 2019

Ta có A=(n1)(n23n+1)A=(n−1)(n2−3n+1). Với n = 0, 1, 2 thì A không phải là số nguyên tố. Với n = 3 thì A = 2 là số nguyên tố.

Với n>3n23n+1=n(n3)+1>1n>3⇒n2−3n+1=n(n−3)+1>1 và n - 1 > 2 nên A là hợp số. Vậy n = 3 thỏa mãn bài toán

Bạn kham khảo nhé.

10 tháng 2 2019

a có: A=n34n2+4n1A=n3−4n2+4n−1=(n-1)(n^2+n+1)-4n(n-1) =(n-1)(n^2-3n+1)$

Đến đây giải từng số bằng 1, số còn lại là SNT, rồi kết luận.

Bạn kham khảo nhé.

6 tháng 11 2019

Tôi vẫn chưa nghĩ ra và cũng đang dặt câu hỏi đây

24 tháng 3 2020

gợi ý nhé

24 tháng 3 2020

đặt A=1+n^2017+n^2015

ta có x=1 thì A(1)=3 là SNT