Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}\sqrt{x+3}-2\sqrt{y+1}=2\\2\sqrt{x+3}+\sqrt{y+1}=4\end{cases}\left(Đk:x\ge-3;y\ge-1\right)}\)
Đặt \(\sqrt{x+3}=a\left(a\ge0\right);\sqrt{y+1}=b\left(b\ge0\right)\)
Khi đó HPT có dạng:
\(\hept{\begin{cases}a-2b=2\\2a+b=4\end{cases}}\Rightarrow\hept{\begin{cases}2a-4b=4\\2a+b=4\end{cases}}\Rightarrow\hept{\begin{cases}-5b=0\\2a+b=4\end{cases}}\Rightarrow\hept{\begin{cases}b=0\\2a+0=4\end{cases}}\Rightarrow\hept{\begin{cases}b=0\\a=2\end{cases}}\left(tm\right)\)
\(\Rightarrow\hept{\begin{cases}\sqrt{y+1}=0\\\sqrt{x+3}=2\end{cases}}\Rightarrow\hept{\begin{cases}y+1=0\\x+3=4\end{cases}}\Rightarrow\hept{\begin{cases}y=-1\\x=1\end{cases}}\)
a) \(\hept{\begin{cases}\sqrt{2x}-\sqrt{3y}=1\left(1\right)\\x+\sqrt{3y}=\sqrt{2}\left(2\right)\end{cases}}\) ( ĐK \(x,y\ge0\) )
Từ (1) và (2)\(\Leftrightarrow\sqrt{2x}+x=1+\sqrt{2}\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}+\sqrt{2}+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-1=0\\\sqrt{x}+\sqrt{2}+1=0\end{cases}}\)
\(\Leftrightarrow x=1\) ( Do \(x\ge0\) )
Thay \(x=1\) vào hệ (1) ta có :
\(\sqrt{2}-\sqrt{3y}=1\)
\(\Leftrightarrow\sqrt{3y}=\sqrt{2}-1\)
\(\Leftrightarrow y=\frac{3-2\sqrt{2}}{3}\) ( thỏa mãn )
P/s : E chưa học cái này nên không chắc lắm ...
\(b,\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\\left(\sqrt{2}-1\right)x+\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)y=\sqrt{2}-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\\left(\sqrt{2}-1\right)x+y=\sqrt{2}-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\2y=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=-\frac{1}{2}\\x=\frac{\sqrt{2}-0.5}{\sqrt{2}-1}=\frac{3+\sqrt{2}}{2}\end{cases}}\)
a ) \(HPT\Leftrightarrow\hept{\begin{cases}5x-y=4\left(1\right)\\3x-y=5\left(2\right)\end{cases}}\)
Lấy (1) trừ (2) :
\(\Rightarrow2x=-1\Rightarrow x=-\frac{1}{2}\)
Thay \(x=-\frac{1}{2}\) vào (1) : \(y=5x-4=5.-\frac{1}{2}-4=-\frac{13}{2}\)
Vậy HPT có nghiệm \(\left(x,y\right)=\left(-\frac{1}{2},-\frac{13}{2}\right)\)
b ) \(\hept{\begin{cases}\sqrt{3}x-\sqrt{2}y=1\\\sqrt{2}x+\sqrt{3}y=\sqrt{3}\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{6}x-2y=\sqrt{2}\left(1\right)\\\sqrt{6}x+3y=3\left(2\right)\end{cases}}}\)
Lấy (2 ) -(1) thu được :
\(5y=3-\sqrt{2}\Rightarrow y=\frac{3-\sqrt{2}}{5}\)
Thay giá trị y trên vào (1) : \(x=\frac{2y+\sqrt{2}}{\sqrt{6}}=\frac{\sqrt{6}+\sqrt{3}}{5}\)
Vậy ......
1)
\(\hept{\begin{cases}\left(\sqrt{2}+\sqrt{3}\right)x-y\sqrt{2}=\sqrt{2}\\\left(\sqrt{2}+\sqrt{3}\right)x+y\sqrt{3}=-\sqrt{3}\end{cases}\Leftrightarrow\hept{\begin{cases}-y\left(\sqrt{2}+\sqrt{3}\right)=\sqrt{2}+\sqrt{3}\\\left(\sqrt{2}+\sqrt{3}\right)x+y\sqrt{3}=-\sqrt{3}\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}\)
cho mk hỏi ai chs lazi điểm danh cái đê ~ mk hỏi thật đấy k đùa nha ~ bình luận thì mk k cho 3 cái ~
\(\hept{\begin{cases}\sqrt{x-1}-3\sqrt{y+2}=2\\2\sqrt{x-1}+5\sqrt{y+2}=15\end{cases}}\)
Đặt \(\sqrt{x-1}=a\left(a\ge0\right)\)
\(\sqrt{y+2}=b\left(b\ge0\right)\)
Khi đó hpt có dạng:
\(\hept{\begin{cases}a-3b=2\\2a+5b=15\end{cases}\Rightarrow\hept{\begin{cases}2a-6b=4\\2a+5b=15\end{cases}}\Rightarrow\hept{\begin{cases}-11b=-11\\2a+5b=15\end{cases}}\Rightarrow\hept{\begin{cases}b=1\\2a+5.1=15\end{cases}}\Rightarrow\hept{\begin{cases}b=1\\a=5\end{cases}\left(TM\right)}}\)
\(\Rightarrow\hept{\begin{cases}\sqrt{x-1}=5\\\sqrt{y+2}=1\end{cases}\Rightarrow\hept{\begin{cases}x-1=25\\y+2=1\end{cases}\Rightarrow}\hept{\begin{cases}x=26\\y=-1\end{cases}}}\)