Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M\left(x\right)+N\left(x\right)\)
\(=5x^3-x^2-4+2x^4-2x^2+2x+1\)
\(=2x^4+5x^3-3x^2+2x-3\)
\(M\left(x\right)-N\left(x\right)\)
\(=5x^3-x^2-4-\left(2x^4-2x^2+2x+1\right)\)
\(=5x^3-x^2-4-2x^4+2x^2-2x-1\)
\(=-2x^4+5x^3+x^2-2x-5\)
\(M\left(x\right)+P\left(x\right)=N\left(x\right)\)
\(\Rightarrow P\left(x\right)=N\left(x\right)-M\left(x\right)\)
\(\Rightarrow P\left(x\right)=2x^4-2x^2+2x+1-\left(5x^3-x^2-4\right)\)
\(\Rightarrow P\left(x\right)=2x^4-2x^2+2x+1-5x^3+x^2+4\)
\(\Rightarrow P\left(x\right)=2x^4-5x^3-x^2+2x+5\)
a) B(x)=\(4x^5\) -\(2x^4\) +\(3x^3\) -\(2x^2\) +\(4x\) +\(\dfrac{-1}{2}\)
b) C(x)=\(2x^4-x^3+\dfrac{1}{2}+4x\)
a) Ta có: \(5x^2-3x\left(x+2\right)\)
\(=5x^2-3x^2-6x\)
\(=2x^2-6x\)
b) Ta có: \(3x\left(x-5\right)-5x\left(x+7\right)\)
\(=3x^2-15x-5x^2-35x\)
\(=-2x^2-50x\)
c) Ta có: \(3x^2y\left(2x^2-y\right)-2x^2\left(2x^2y-y^2\right)\)
\(=3x^2y\left(2x^2-y\right)-2x^2y\left(2x^2-y\right)\)
\(=x^2y\left(2x^2-y\right)=2x^4y-x^2y^2\)
d) Ta có: \(3x^2\left(2y-1\right)-\left[2x^2\cdot\left(5y-3\right)-2x\left(x-1\right)\right]\)
\(=6x^2y-3x^2-\left[10x^2y-6x^2-2x^2+2x\right]\)
\(=6x^2y-3x^2-10x^2y+6x^2+2x^2-2x\)
\(=-4x^2y+5x^2-2x\)
e) Ta có: \(4x\left(x^3-4x^2\right)+2x\left(2x^3-x^2+7x\right)\)
\(=4x^4-16x^3+4x^4-2x^3+14x^2\)
\(=8x^4-18x^3+14x^2\)
f) Ta có: \(25x-4\left(3x-1\right)+7x\left(5-2x^2\right)\)
\(=25x-12x+4+35x-14x^3\)
\(=-14x^3+48x+4\)
Ta có:
P(x) = 2x4 –x - 2x3 + 1
Q(x) = 5x2 – x3 + 4x
H(x) = -2x4 + x2 + 5.
Sắp xếp các đa thức theo lũy thừa giảm dần rồi xếp các số hạng đồng dạng theo cùng cột dọc ta được:
ta có:
P(x) = 2x4 –x – 2x3 + 1
Q(x) = 5x2 – x3 + 4x
H(x) = -2x4 + x2 + 5.
Sắp xếp các đa thức theo lũy thừa giảm dần rồi xếp các số hạng đồng dạng theo cùng cột dọc ta được:
a)
\(A=\left(x+3\right)\left(x^2-3x+9\right)-\left(54+x^3\right)\)
\(=x^3-3x^2+9x+3x^2-9x+27-54-x^3\)
\(=-27\)
or
\(A=x^3+27-54-x^3=-27\)
b)
\(B=\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=8x^3+y^3-8x^3+y^3=2y^3\)
c)
\(C=\left(2x+1\right)^2+\left(1-3x\right)^2+2\left(2x+1\right)\left(3x-1\right)\)
\(=\left(2x+1+3x-1\right)^2=\left(5x\right)^2=25x^2\)
d)
\(D=\left(x-2\right)\left(x^2+2x+4\right)-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)
\(=x^3-8-\left(x-1\right)^3+3\left(x-1\right)\left(x+1\right)\)
\(=6x^2-3x-10\)
\(a,A\left(x\right)=2x+3\)
Có \(2x+3=0\)
\(\Rightarrow x=-\frac{3}{2}\)
Vậy \(-\frac{3}{2}\)là 1 nghiệm của đa thức A(x)
\(b,B\left(x\right)=4x^2-25\)
\(\Rightarrow B\left(x\right)=\left(2x\right)^2-25\)
Có \(B\left(x\right)=0\Rightarrow\left(2x\right)^2-25=0\)
\(\Rightarrow\left(2x\right)^2=25\)
\(\Rightarrow\orbr{\begin{cases}2x=5\\2x=-5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{5}{2}\end{cases}}\)
Vậy -5/2 là 1 nghiệm của B(x)
\(c,C\left(x\right)=x^2-7\)
Có \(C\left(x\right)=0\Leftrightarrow x^2-7=0\)
\(\Rightarrow x^2=7\)
\(\Rightarrow x=\orbr{\begin{cases}\sqrt{7}\\-\sqrt{7}\end{cases}}\)
Vậy \(\sqrt{7};-\sqrt{7}\)là 2 nghiệm của C(x)
\(d,D\left(x\right)=x\left(1-2x\right)+\left(2x^2-x+4\right)\)
\(D\left(x\right)=x-2x^2+2x^2-x+4\)
\(D\left(x\right)=4\)
Vậy D(x) vô nghiệm
+) Ta có: A(x) = 2x + 3 = 0
(=) 2x = -3
(=) x = \(\frac{-3}{2}\).
+) Ta có: B(x) = 4x2 -25 = 0
(=) 4x2 = 25
(=) (2x)2 = 52
=> 2x = 5
(=) x = \(\frac{5}{2}\).