Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt cosi cho 2 số không âm ta có:
`x+4>=4sqrtx`
`y+1>=2sqrty`
`=>(x+4)(y+1)>=8sqrt{xy}`
Mà đề bài cho `(x+4)(y+1)=8sqrt(xy)`
Dấu "=" xảy ra khi `x=4,y=1`
`=>T=4+1^2021=4+1=5`
Cần chứng minh \(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{8}{\left(a+b\right)^2}\forall a;b>0\)
Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)
Mà \(ab\le\frac{\left(a+b\right)^2}{4}\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{\frac{\left(a+b\right)^2}{4}}=\frac{8}{\left(a+b\right)^2}\) (đpcm)
Áp dụng ta được :
\(P=\frac{1}{\left(x+1\right)^2}+\frac{1}{\left(\frac{y}{2}+1\right)^2}+\frac{8}{\left(z+3\right)^2}\ge\frac{8}{\left(x+\frac{y}{2}+2\right)^2}+\frac{8}{\left(z+3\right)^2}\)
\(\ge\frac{64}{\left(x+\frac{y}{2}+z+5\right)^2}\)
Ta có : \(\left(x^2+1\right)+\left(y^2+4\right)+\left(z^2+1\right)\ge2x+4y+2z\)
\(\Leftrightarrow3y+6\ge2x+4y+2z\Rightarrow6\ge2x+y+2z\)
\(\Rightarrow x+\frac{y}{2}+z\le3\)\(\Rightarrow P\ge\frac{64}{\left(3+5\right)^2}=1\)
Vậy Min P = 1 Tại \(x=1;y=2;z=1\)
em ko hiểu mọi người thích cái người ? tk cho mà lại thích nhỉ
em thì thích OLM lựa chọn để có điểm cơ như thế mới có điểm .
Ta có bất đẳng thức: \(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{8}{\left(a+b\right)^2}\)
Dấu \(=\)xảy ra khi \(a=b\).
Áp dụng ta được:
\(A=\frac{1}{\left(x+1\right)^2}+\frac{4}{\left(y+2\right)^2}+\frac{8}{\left(z+3\right)^2}=\frac{1}{\left(x+1\right)^2}+\frac{1}{\frac{\left(y+2\right)^2}{2^2}}+\frac{8}{\left(z+3\right)^2}\)
\(\ge\frac{8}{\left(x+1+\frac{y+2}{2}\right)^2}+\frac{8}{\left(z+3\right)^2}\ge\frac{64}{\left(x+\frac{y}{2}+z+5\right)^2}=\frac{256}{\left(2x+y+2z+10\right)^2}\)
Ta có: \(2x+4y+2z\le x^2+1+y^2+4+z^2+1=x^2+y^2+z^2+6\le3y+6\)
\(\Rightarrow2x+y+2z\le6\)
Suy ra \(A\ge\frac{256}{\left(6+10\right)^2}=1\)
Dấu \(=\)xảy ra khi \(x=z=1,y=2\).
\(P\le\sqrt{3\left(\sum\dfrac{1}{\left(x+y\right)^2+\left(x+1\right)^2+4}\right)}\le\sqrt{3\left(\sum\dfrac{1}{4xy+4x+4}\right)}\)
\(P\le\sqrt{\dfrac{3}{4}\sum\left(\dfrac{1}{xy+x+1}\right)}=\dfrac{\sqrt{3}}{2}\)
\(P_{max}=\dfrac{\sqrt{3}}{2}\) khi \(x=y=z=1\)
Bài 2: Ta có: x, y, z không âm và \(x+y+z=\frac{3}{2}\)nên \(0\le x\le\frac{3}{2}\Rightarrow2-x>0\)
Áp dụng bất đẳng thức AM - GM dạng \(ab\le\frac{\left(a+b\right)^2}{4}\), ta được: \(x+2xy+4xyz=x+4xy\left(z+\frac{1}{2}\right)\le x+4x.\frac{\left(y+z+\frac{1}{2}\right)^2}{4}=x+x\left(2-x\right)^2\)
Ta cần chứng minh \(x+x\left(2-x\right)^2\le2\Leftrightarrow\left(2-x\right)\left(x-1\right)^2\ge0\)*đúng*
Đẳng thức xảy ra khi \(\left(x,y,z\right)=\left(1,\frac{1}{2},0\right)\)
Bài 3: Áp dụng đánh giá quen thuộc \(4ab\le\left(a+b\right)^2\), ta có: \(2\le\left(x+y\right)^3+4xy\le\left(x+y\right)^3+\left(x+y\right)^2\)
Đặt x + y = t thì ta được: \(t^3+t^2-2\ge0\Leftrightarrow\left(t-1\right)\left(t^2+2t+2\right)\ge0\Rightarrow t\ge1\)(dễ thấy \(t^2+2t+2>0\forall t\))
\(\Rightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\ge\frac{1}{2}\)
\(P=3\left(x^4+y^4+x^2y^2\right)-2\left(x^2+y^2\right)+1=3\left[\frac{3}{4}\left(x^2+y^2\right)^2+\frac{1}{4}\left(x^2-y^2\right)^2\right]-2\left(x^2+y^2\right)+1\ge\frac{9}{4}\left(x^2+y^2\right)^2-2\left(x^2+y^2\right)+1\)\(=\frac{9}{4}\left[\left(x^2+y^2\right)^2+\frac{1}{4}\right]-2\left(x^2+y^2\right)+\frac{7}{16}\ge\frac{9}{4}.2\sqrt{\left(x^2+y^2\right)^2.\frac{1}{4}}-2\left(x^2+y^2\right)+\frac{7}{16}=\frac{9}{4}\left(x^2+y^2\right)-2\left(x^2+y^2\right)+\frac{7}{16}=\frac{1}{4}\left(x^2+y^2\right)+\frac{7}{16}\ge\frac{1}{8}+\frac{7}{16}=\frac{9}{16}\)Đẳng thức xảy ra khi x = y = 1/2
Hướng dẫn: đặt \(A=\dfrac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\dfrac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\dfrac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
Khi đó \(F-A=x-y+y-z+z-x=0\Rightarrow F=A\)
\(\Rightarrow2F=F+A=\sum\dfrac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}\ge\sum\dfrac{\left(x^2+y^2\right)^2}{2\left(x^2+y^2\right)\left(x+y\right)}\ge\sum\dfrac{\left(x+y\right)^2\left(x^2+y^2\right)}{4\left(x^2+y^2\right)\left(x+y\right)}\)
\(\Rightarrow2F\ge\dfrac{x+y+z}{2}\Rightarrow F\ge\dfrac{x+y+z}{4}\)
Lời giải:
Đặt $xy=t$
Áp dụng BĐT AM_GM:
$xy\leq \frac{(x+y)^2}{4}=3$. Như vậy $0\leq t\leq 3$
Ta có:
$P=(x^4+1)(y^4+1)=x^4y^4+x^4+y^4+1$
$=x^4y^4+(x^2+y^2)^2-2x^2y^2+1$
$=x^4y^4+[(x+y)^2-2xy]^2-2x^2y^2+1$
$=x^4y^4+2x^2y^2-48xy+145$
$=t^4+2t^2-48t+145$
$=t(t^3+2t-48)+145$
Vì $0\leq t\leq 3$ nên $t(t^3+2t-48)\leq 0$
$\Rightarrow P\leq 145$
Vậy $P_{\max}=145$. Giá trị này đạt tại $(x,y)=(0,2\sqrt{3})$ và hoán vị.