\(x^2y^2-\left(x-1\right)^2+\left(y-1\right)^2-2xy\left(x+y...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(PT\Leftrightarrow xy\left(x+y-1\right)+\left(x+y-1\right)=1\)

\(\Leftrightarrow\left(x+y-1\right)\left(xy+1\right)=1\)

\(\Leftrightarrow\hept{\begin{cases}x+y-1=1\\xy+1=1\end{cases}hoac\hept{\begin{cases}x+y-1=-1\\xy+1=-1\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y=2\\xy=0\end{cases}hoac\hept{\begin{cases}x+y=0\\xy=-2\end{cases}}}\)

Đến đây thì đơn giản rồi nhé :)))

9 tháng 2 2020

Phương trình tương đương: \(\left(x+y\right)\left(x^2y^2+1\right)=xy+2\)

\(\Leftrightarrow x+y=\frac{xu+2}{x^2y^2+1}\)

\(\Rightarrow\left(xy+2\right)⋮\left(x^2y^2+1\right)\Rightarrow\left(x^2y^2-4\right)⋮\left(x^2y^2+1\right)\)

\(\Rightarrow\left(x^2y^2+1-5\right)⋮\left(x^2y^2+1\right)\Rightarrow5⋮\left(x^2y^2+1\right)\)

\(\Rightarrow x^2y^2+1\in\left\{1;5\right\}\Rightarrow x^2y^2\in\left\{0;4\right\}\Rightarrow xy\in\left\{-2;0;2\right\}\)

  • \(xy=0\Rightarrow xy=2\Rightarrow\left(x;y\right)\in\left\{\left(0;2\right);\left(2;0\right)\right\}\)
  • \(xy-2\Rightarrow x+y=0\Rightarrow y=-x\Rightarrow x^2=2\left(ktm\right)\)
  • \(xy=2\Rightarrow x+y=\frac{4}{5}\left(ktm\right)\)

Vậy: \(\left(x,y\right)\in\left\{\left(0;2\right);\left(2;0\right)\right\}\)

Đặt y=3-x, bài toán trở thành tìm min \(P=x^4+y^4+6x^2y^2\), trong đó x và y là các số thực thỏa mãn hệ \(\int^{x+y=3}_{x^2+y^2=5}\Rightarrow\int^{x^2+y^2+2xy=9}_{x^2+y^2\ge5}\)  \(\Rightarrow\left(x^2+y^2\right)+4\left(x^2+y^2+2xy\right)\ge5+4.9=41\)\(\Rightarrow5\left(x^2+y^2\right)+4\left(2xy\right)\ge41\)Lại có \(16\left(x^2+y^2\right)^2+25\left(2xy\right)^2\ge40\left(x^2+y^2\right)\left(2xy\right)\) (theo bất đẳng thức cosi) (1)Dấu bằng xảy ra...
Đọc tiếp

Đặt y=3-x, bài toán trở thành tìm min \(P=x^4+y^4+6x^2y^2\), trong đó x và y là các số thực thỏa mãn hệ \(\int^{x+y=3}_{x^2+y^2=5}\Rightarrow\int^{x^2+y^2+2xy=9}_{x^2+y^2\ge5}\)  \(\Rightarrow\left(x^2+y^2\right)+4\left(x^2+y^2+2xy\right)\ge5+4.9=41\)

\(\Rightarrow5\left(x^2+y^2\right)+4\left(2xy\right)\ge41\)

Lại có \(16\left(x^2+y^2\right)^2+25\left(2xy\right)^2\ge40\left(x^2+y^2\right)\left(2xy\right)\) (theo bất đẳng thức cosi) (1)

Dấu bằng xảy ra khi \(4\left(x^2+y^2\right)=5\left(2xy\right)\)

Cộng 2 vế của (1) với \(25\left(x^2+y^2\right)^2+16\left(2xy\right)^2\) ta có

\(41\left(\left(x^2+y^2\right)^2+\left(2xy\right)^2\right)\ge\left(5\left(x^2+y^2\right)+4\left(2xy\right)\right)^2\ge41^2\)

\(\Rightarrow\left(x^2+y^2\right)^2+\left(2xy\right)^2\ge41\Leftrightarrow x^4+y^4+6x^2y^2\ge41\)

Vậy min =41, dấu bằng xảy ra khi x=1 hoặc x=2

0
12 tháng 3 2016

thông điệp nhỏ:

hay kkhi ko muốn k

1 tháng 12 2017

x2+2y2+2xy-y=3(y-1)

<=> x2+2xy+y2+y2-y=3(y-1)

<=> (x+y)2=3(y-1)-y(y-1)

<=> (x+y)2=(y-1)(3-y)

Nhận thấy, Vế trái (x+y)2 \(\ge\)0 Với mọi x,y

=> Để phương trình có nghiệm thì Vế phải \(\ge\)0

<=> (y-1)(3-y)\(\ge\)0 <=> 1\(\le\)y\(\le\)3

Y nguyên => y1=1; y2=2; y3=3

+/ y=1 => x=-y=-1

+/ y=2 => x=-1

+/ y=3 => x=-y=-3

Các cặp (x,y) nguyên là: (-1,1); (-1; 2); (-3,3)