K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2016

Từ phương trình ta thấy rằng x phải là số lẻ

Ta có: \(x=2k+1\)

\(\Rightarrow\left(2k+1\right)^2=2y^2-8y+3\)

\(\Leftrightarrow4k^2+4k+1=2y^2-8y+3\)

\(\Leftrightarrow2k^2+2k=y^2-4y+1\)

\(\Leftrightarrow2k\left(k+1\right)=y^2+1-4y\)

Ta nhận xét thấy VT chia hết cho 4

Vế phải không chia hết cho 4 vì số chính phương chỉ có 2 dạng là 4n và 4n+1 nên y2 + 1 - 4y không thể chia hết cho 4 được

Vậy phương trình đã cho vô nghiệm

5 tháng 11 2019

Sorry nhầm 2x thành 2y

27 tháng 3 2016

sửa lại đề đi cu , giữa các số k có dấu kìa

27 tháng 3 2016

Dấu nhân x đó

30 tháng 7 2018

viết lại pt dưới dạng 

\(x^2-2x\left(y+2\right)+\left(2y^2+8\right)=0.\)

\(\Delta`x=\left(y+2\right)^2-\left(2y^2+8\right)=0\)

\(\Delta`=y^2+4y+4-2y^2-8=-y^2+4y-4=0\)

\(\Delta`=-\left(y-2\right)^2=0\Leftrightarrow y=2\)

thay y=2 

\(x^2-4x+8-4x=-8\)

\(x^2-8x+16=0\)

\(\left(x-4\right)^2=0\Leftrightarrow x=4\)

30 tháng 7 2018

        \(x^2-2xy+2y^2-4x=-8\)

\(\Leftrightarrow x^2-2xy+2y^2-4x+8=0\)

\(\Leftrightarrow2x^2-4xy+4y^2-8x+16=0\)

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(x^2-8x+16\right)=0\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(x-4\right)^2=0\)

Ta có: \(\left(x-2y\right)^2+\left(x-4\right)^2\ge0\) \(\forall x;y\)

Dấu "=" xảy ra: \(\Leftrightarrow\hept{\begin{cases}x-2y=0\\x-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2y\\x=4\end{cases}\Leftrightarrow\hept{\begin{cases}y=2\\x=4\end{cases}}}\) (thỏa mãn)

Vậy x = 4 và y = 2

Bài bạn gửi hay đấy .Chúc bạn học tốt.

19 tháng 8 2017

Bài 2 có thể làm như sau:
y2=x(x+1)(x+7)(x+8)=[x(x+8)][(x+1)(x+7)]=(x2+8x)(x2+8x+7)y2=x(x+1)(x+7)(x+8)=[x(x+8)][(x+1)(x+7)]=(x2+8x)(x2+8x+7)
Đặt x2+8x=kx2+8x=k
Suy ra y2=k(k+7)→4y2=4k2+28k→4y2=(2k+7)2−49→(2k+7−2y)(2k+7+2y)=49y2=k(k+7)→4y2=4k2+28k→4y2=(2k+7)2−49→(2k+7−2y)(2k+7+2y)=49 đến đây có phương trình ước số xét ước của 4949 là xong.
Đáp số: (x,y)=(−4,12),(−4,−12),(−7,0),(−1,0)(x,y)=(−4,12),(−4,−12),(−7,0),(−1,0)
Mình không nhìn không kỹ, toàn đã post bài đó, mong mod xóa bài này hộ mình :icon6: :closedeyes: 

18 tháng 9 2017

Kushito Kamigaya tham khảo nhé:

x² + (x+y)² = (x+9)² 
<=> (x+y)² = (x+9)² - x² 
<=> (x+y)² = 9(2x+9) (*) 
Vì: 9 = 3² nên từ (*) ta thấy (2x+9) phải là số chính phương 
=> 2x+9 = n² => 2x = (n-3)(n+3) => x = (n-3)(n+3)/2 
n-3 và n+3 cùng chẳn hoặc cùng lẽ, nên x nguyên dương khi n là số lẽ lớn hơn 3 
đặt n = 2k+1 với k > 1, (k nguyên) 
có: 2x + 9 = (2k+1)² = 4k²+4k+1 
=> x = 2k²+2k-4, thay x vào (*) 

(x+y)² = 9(2k+1)² => x+y = 3(2k+1) = 6k+3 => y = 6k+3-x 
=> y = 6k + 3 - 2k² - 2k + 4 = -2k² + 4k + 7 > 0 
=> k² - 2k < 7/2 => (k-1)² < 7/2+1 = 9/2 
=> k-1 < 3/√2 => k - 1 ≤ 2 => k ≤ 3 
với đk k > 1 ở trên ta chỉ chọn được k = 2 hoặc k = 3 

*k = 2 => x = 8, y = 7 

*k = 3 => x = 20, y = 1