Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(2^x+\left(x^2+1\right)\left(y-2\right)\left(y-4\right)=0\)
Mà \(2^x>0,x^2+1>0\)
=> \(\left(y-2\right)\left(y-4\right)< 0\)
=> \(2< y< 4\)
=> \(y=3\)
Thay y=3 vào đề bài ta có:
\(2^x-\left(x^2+1\right)=0\)
=> \(2^x=x^2+1\)
Mà \(2^x\)chẵn với \(x>0\)
=> \(x\)lẻ
Đặt \(x=2k+1\)(k không âm)
Khi đó \(2^{2k+1}=\left(2k+1\right)^2+1\)
=> \(2.2^{2k}=4k^2+4k+2\)
=> \(2^{2k}=2k^2+2k+1\)
+ k=0 => \(2^0=1\)thỏa mãn
=> \(x=1\)
+ \(k>0\)=> \(2^k\)chẵn
Mà \(2k^2+2k+1\)lẻ với mọi k
=> không giá trị nào của k thỏa mãn
Vậy x=1,y=3
- Với \(x=1\Rightarrow y=1\)
- Với \(x>1\Rightarrow y>1\)
\(\Rightarrow3^x=2^y+1\)
Do \(y>1\Rightarrow2^y⋮4\Rightarrow2^y+1\equiv1\left(mod4\right)\) \(\Rightarrow3^x\equiv1\left(mod4\right)\)
Nếu \(x=2k+1\Rightarrow3^x=3^{2k+1}=3.9^k\equiv3\left(mod4\right)\) (ktm)
\(\Rightarrow x=2k\Rightarrow3^{2k}-1=2^y\)
\(\Rightarrow\left(3^k-1\right)\left(3^k+1\right)=2^y\)
\(\Rightarrow\left\{{}\begin{matrix}3^k-1=2^a\\3^k+1=2^b\end{matrix}\right.\) với \(b>a\Rightarrow2^b-2^a=2\)
\(\Rightarrow2^a\cdot\left(2^{b-a}-1\right)=2\Rightarrow2^a=2\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)
\(\Rightarrow3^k-1=2\Rightarrow k=1\Rightarrow x=2\Rightarrow y=3\)
Vậy \(\left(x;y\right)=\left(1;1\right);\left(2;3\right)\)