Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+y\right)^2+3x+y+1=z^2\)với x,y,z nguyên dương \(\Rightarrow z^2>\left(x+y\right)^2\)
\(\left(x+y\right)^2+3x+y+1=\left(x+y+2\right)^2-x-3y-3=z^2\)với x,y,z nguyên dương \(\Rightarrow z^2< \left(x+y+2\right)^2\)
Vậy \(z^2\)là số chính phương ở giữa 2 số chính phương khác là \(\left(x+y\right)^2\)và \(\left(x+y+2\right)^2\)
\(\Rightarrow z^2=\left(x+y+1\right)^2\Leftrightarrow\orbr{\begin{cases}x+y=1-z\left(1\right)\\x+y=z-1\left(2\right)\end{cases}}\)
Xét (1): \(x+y=1-z>0\Rightarrow z< 1\Leftrightarrow z=0\)Vì 0 không là số nguyên dương nên (1) vô nghiệm.
Xét (2): \(x+y=z-1\)lúc này pt có vô số nghiệm nguyên dương (x;y;z), x>0, y>0, z>1
a)\(\left\{{}\begin{matrix}8x+2y=4\\8x+3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\4x+1=2\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}y=1\\x=\frac{1}{4}\end{matrix}\right.\)b)
\(\left\{{}\begin{matrix}12x-8y=44\\12x-15y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7y=35\\4x-5y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\4x-5.5=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=7\end{matrix}\right.\)c)\(\left\{{}\begin{matrix}9x=-18\\4x+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\4.\left(-2\right)+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=7\end{matrix}\right.\)
câu a)
nhân cả 3 phương trình
ta được
\(x^2y^2z^2=6\left(x+y-z\right)\left(x-y+z\right)\left(y-x+z\right)\)
Vế trái là 1 số chính phương nên Vp cũng là số chính phương
6 không phải là số chính phương nên
\(\left(x+y-z\right)\left(x-y+z\right)\left(y-x+z\right)\)=6
lập bảng
đặt x+y-z=1 ; x-y+z=2; y-x+z=3 giải ra và tương tự xét các cái còn lại (hơi lâu) nhớ xét thêm cái âm nữa
câu b)
từ hpt =>5y+3=11z+7
<=>\(y=\frac{11z+4}{5}\)>0 với mọi y;z thuộc R
y nguyên dương nên (11z+4)thuộc bội(5) và z_min
=> z=1
=> y=3
=> x =18 (t/m)
câu c)
qua pt (1) =>x=20-2y-3z
thay vao 2) <=> y+5z=23
y;z là nguyên dương mà 5z chia hêt cho 5
=> z={1;2;3;4}
=> y={18;13;8;3}
=> x={-19;-12;-5;2} đoạn này bạn làm từng GT của z nhé
chọn x=2; y=3; z=4 (t/m)
Nếu có sai sót hãy báo lại qua gmail: tiendung230103@gmail.com
Câu 1:
\(3x^2+2xy+5y^2=45\)
\(\Leftrightarrow 2x^2+(x^2+2xy+y^2)+4y^2=45\)
\(\Leftrightarrow 2x^2+(x+y)^2+4y^2=45\)
\(\Leftrightarrow 4y^2=45-2x^2-(x+y)^2\leq 45\)
\(\Rightarrow y^2\leq \frac{45}{4}< 16\Rightarrow -4< y< 4\)
Vì \(y\in\mathbb{Z}\Rightarrow y\in\left\{-3;-2;-1;0;1;2;3\right\}\)
Thay từng giá trị của $y$ vào PT ban đầu, cuối cùng ta có:
$y=-3$ thì $x=0$ hoặc $x=2$
$y=3$ thì $x=0$ hoặc $x=-2$
Vậy.........
Câu 2: Mình nghĩ phải thêm điều kiện $x,y,z$ dương
Câu 3:
PT \(\Leftrightarrow (x-2008)^2=[(y-1)(y+2)][y(y+1)]\)
\(\Leftrightarrow (x-2008)^2=(y^2+y-2)(y^2+y)\)
\(\Leftrightarrow (x-2008)^2=(y^2+y)^2-2(y^2+y)=(y^2+y-1)^2-1\)
\(\Leftrightarrow (y^2+y-1-x+2008)(y^2+y-1+x-2008)=1\)
\(\Leftrightarrow (y^2+y-x+2007)(y^2+y+x-2009)=1\)
Đến đây ta xét các TH:
\(\left\{\begin{matrix} y^2+y-x+2007=1\\ y^2+y+x-2009=1\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=2008\\ y=1; y=-2\end{matrix}\right.\)
\(\left\{\begin{matrix} y^2+y-x+2007=-1\\ y^2+y+x-2009=-1\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=2008\\ y=0; y=-1\end{matrix}\right.\)
Vậy........