Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Cho em hỏi : tìm nghiệm nguyên 19x^2+28y^2=729 và rút gọn (8+8^1/2+20^1/2+40^1/2)^1/2? | Yahoo Hỏi & Đáp
Bài 2:
a/ \(xy-x-y=2\)
\(\Leftrightarrow x\left(y-1\right)-y=2\)
\(\Leftrightarrow x\left(y-1\right)-\left(y-1\right)=3\)
\(\Leftrightarrow\left(y-1\right)\left(x-1\right)=3\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1\\y-1\end{matrix}\right.\)\(\inƯ\left(3\right)\)
Giả sử \(x\ge y\) \(\Rightarrow x-1\ge y-1\)
Ta có:
x-1 | 3 | -1 |
y-1 | 1 | -3 |
x | 4 | 0 |
y | 2 | -2 |
Vậy nghiệm nguyên của pt là:
(x;y) = (4;2) ; (0;-2); (2;4) ; (-2;0)
b/ pt thành nhân tử -->
< = >(x-y-1)(x+y-1) = 10
xét như ý a (cái chỗ này thì e k chắc lắm)
c, d: E chưa lm đc
Lời giải:
Theo định lý Viet:
$x_1+x_2=19$
$x_1x_2=9$
Khi đó:
\(x_1\sqrt{x_1}+x_2\sqrt{x_2}=(\sqrt{x_1})^3+(\sqrt{x_2})^3=(\sqrt{x_1}+\sqrt{x_2})(x_1-\sqrt{x_1x_2}+x_2)\)
\(=(\sqrt{x_1}+\sqrt{x_2})(19-\sqrt{9})=16(\sqrt{x_1}+\sqrt{x_2})\)
\(=16\sqrt{x_1+x_2+2\sqrt{x_1x_2}}=16\sqrt{19+2\sqrt{9}}=80\)
\(x_1^2+x_2^2=(x_1+x_2)^2-2x_1x_2=19^2-2.9=343\)
$\Rightarrow P=\frac{80}{343}$
sửa đề thành \(19x^2+28y^2=729\)
Ta có \(28y^2=729-19x^2\le729\Rightarrow y^2\le\frac{729}{28}< 27\)
Mà \(y^2\) là số chính phương =>\(y^2\in\left\{0;1;4;9;16;25\right\}\)
đến đây là tìm được y và => tìm được x nhé !
^_^