Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
pt tương đương với: \(y^2=\left(x^2+8x\right)\left(x^2+8x+7\right)\)
Đặt \(z=x^2+8x\Rightarrow y^2=z^2+7zhay4y^2=\left(2z+7\right)^2hay\left(2z-2y+7\right)\left(2z+2y+7\right)=49\)
chị có thể xạy ra cạc trường hợp sau:
\(TH1:\hept{\begin{cases}2z-2y+7=1\\2z+2y=49\end{cases}\Leftrightarrow\hept{\begin{cases}y=12\\z=9\end{cases}}}\)
\(TH2:\hept{\begin{cases}2z-2y+7=49\\2z+2y+7=1\end{cases}\Leftrightarrow\hept{\begin{cases}y=-12\\z=9\end{cases}}}\)
Trong cạ 2 TH trên ta cóa:
\(z=9\Leftrightarrow x^2+8x=9\Leftrightarrow\orbr{\begin{cases}x=1\\x=-9\end{cases}}\)
\(TH3:\hept{\begin{cases}2z-2y+7=-1\\2z+2y+7=-49\end{cases}\Leftrightarrow\hept{\begin{cases}y=-12\\z=-16\end{cases}}}\)
\(TH4:\hept{\begin{cases}2z-2y+7=-49\\2z+2y+7=-1\end{cases}\Leftrightarrow\hept{\begin{cases}y=12\\z=-16\end{cases}}}\)
Trong cạ 2 TH trên ta cóa:
\(z=-16\Leftrightarrow x^2+8x=-16\Leftrightarrow\left(x+4\right)^2=0\Leftrightarrow x=-4\)
\(TH5:2z-2y+7=2z+2y+7\Leftrightarrow y=z=0\)
Khi đó ta cóa: \(x^2+8x=-16\Leftrightarrow\orbr{\begin{cases}x=0\\x=-8\end{cases}}\)
\(TH6:2z-2y+7=2z+2y+7=-7\Leftrightarrow y=0;z=-7\)
Khi đó ta cóa: \(x^2+8x=-7\Leftrightarrow\left(x+1\right)\left(x+7\right)=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-7\end{cases}}\)
Vậy pt đã cho có các nghiệm nguyên \(\left(x;y\right)=\left(1;12\right),\left(-9;12\right),\left(1;-12\right),\left(0;0\right),\left(-8;0\right),\left(-1;0\right),\left(-7;0\right),\left(-4;12\right),\left(-4;-12\right)\)
\(x^3+x^2+x+1=2003^y\)y
\(\left(x^3+x^2\right)+\left(x+1\right)=2003^y\)
\(x^2\left(x+1\right)+\left(x+1\right)=2003^y\)
\(\left(x^2+1\right)\left(x+1\right)=2003^y\)
\(\left(x+1\right)^2\left(x-1\right)=2003^y\)
\(x^4=2003^y\)
a)
\(\Leftrightarrow yz=z^2+2z+3\Leftrightarrow z\left(y-2-z\right)=3\)
\(\hept{\begin{cases}z=\left\{-3,-1,1,3\right\}\\y-2-z=\left\{-1,-3,3,1\right\}\end{cases}\Rightarrow\hept{\begin{cases}x=\left\{-2,0,2,4\right\}\\y=\left\{-2,-4,6,6\right\}\end{cases}}}\)
\(x^2+y^3-3y^2=65-3y\Leftrightarrow x^2+\left(y-1\right)^3=64=0^2+4^3=8^2+0^3=\left(-8\right)^2+0^3\)( Vì \(x,y\inℤ\))
TH1: \(\hept{\begin{cases}x=0\\y-1=4\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=5\end{cases}}}\)
TH2: \(\hept{\begin{cases}x=8\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=8\\y=1\end{cases}}}\)
TH3: \(\hept{\begin{cases}x=-8\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-8\\y=1\end{cases}}}\)
Ở câu b, bậc của y là bậc nhất nên có thể rút y theo x
\(y=\frac{112-2x^2+x}{2x+1}=\frac{-x\left(2x+1\right)+2x+1+111}{2x+1}=-x+1+\frac{111}{2x+1}\)
\(\Rightarrow2x+1\in\text{Ư}\left(111\right)=\left\{111;37;3;1;-111;-37;-3;-1\right\}\)
\(\Rightarrow x\in\left\{...\right\}\)
\(\left(1\right)\Leftrightarrow y^2=\left(x^2+8x\right)\left(x^2+8x+7\right)\)
Đặt t=x2+8x,ta có:
\(y^2=t^2+7t\)\(\Leftrightarrow4y^2=4t^2+28t+49-49\)
\(\Leftrightarrow\left(2t+7\right)^2-4y^2=49\)
\(\Leftrightarrow\left(2t+7-2y\right)\left(2t+7+2y\right)=49\)
Tới đây coi như đã giải quyết xong bài toán