K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2023

\(y^2+2y=x^2+11x+29\)

\(\Leftrightarrow x^2+11x+29-\left(y^2+2y\right)=0\)

\(\Leftrightarrow\left(x+\dfrac{11}{2}\right)^2-\left(y+1\right)^2+29-\left(\dfrac{11}{2}\right)^2+1=0\)

\(\Leftrightarrow\dfrac{\left(2x+11\right)^2}{4}-\left(y+1\right)^2=\dfrac{1}{4}\)

\(\Leftrightarrow\left(2x+11\right)^2-4\left(y+1\right)^2=1\)

\(\Leftrightarrow\left[2x+11+2\left(y+1\right)\right]\left[2x+11-2\left(y+1\right)\right]=1\)

\(\Leftrightarrow\left(2x+2y+13\right)\left(2x-2y+9\right)=1\)

Do x, y nguyên nên : \(\left[{}\begin{matrix}\left\{{}\begin{matrix}2x+2y+13=1\\2x-2y+9=1\end{matrix}\right.\\\left\{{}\begin{matrix}2x+2y+13=-1\\2x-2y+9=-1\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-5\\y=-1\end{matrix}\right.\\\left\{{}\begin{matrix}x=-6\\y=-1\end{matrix}\right.\end{matrix}\right.\)

Vậy : Phương trình có cặp nghiệm : \(\left(x;y\right)\in\left\{\left(-5;-1\right);\left(-6;-1\right)\right\}\)

18 tháng 7 2015

tìm nghiệm phải đặt bt = 0

7 tháng 11 2020

3x2 + y2 + 2x - 2y = 1

\(\Leftrightarrow\)3x2 + y2 + 2x - 2y - 1 = 0

\(\Leftrightarrow\)2x( x+ 1 ) + ( x + 1 ) ( x - 1 ) - y( y - 1 ) = 0

\(\Leftrightarrow\)( x + 1 ) ( 3x + 1 ) - y( y - 1 ) = 0

\(\orbr{\begin{cases}\left(x+1\right)\left(3x+1\right)=0\\y\left(y-1\right)=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x=-1\\x=-\frac{1}{3}\end{cases}}\\\hept{\begin{cases}y=0\\y=1\end{cases}}\end{cases}}\)

30 tháng 7 2016

giup vsssssss mn

25 tháng 8 2018

bn ơi bn lm đc bài này ko giúp mik vs

tìm x;y trong phương trình nghiệm nguyên sau:

a)x^2+y^2-2.(3x-5y)=11                b)x^2+4y^2=21+6x

15 tháng 3 2016

x+ 2y+3xy - x - y + 3 = 0

(x2 - y2) + (3y2 + 3xy) - (x + y) = -3

(x - y)(x + y) + 3y(x + y) - (x + y) = -3

(x + y)(x + 2y -1) = -3 = 1.(-3) = (-1).3

(x;y)=(4;-3) (-6;5)

18 tháng 1 2021

a) Ta có: \(x^2+2y^2+2z^2-2xy-2yz-2z=4\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2z+1\right)=5\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-1\right)^2=5\)

Mà \(5=0^2+1^2+2^2\) nên ta có dễ dàng xét được các TH

Làm tiếp nhé!

18 tháng 1 2021

b) Ta có: \(x^2+13y^2-6xy=100\)

\(\Leftrightarrow\left(x^2-6xy+9y^2\right)+4y^2=100\)

\(\Leftrightarrow\left(x-3y\right)^2=100-4y^2\)

Mà \(\hept{\begin{cases}\left(x-3y\right)^2\ge0\\100-4y^2\le100\end{cases}}\Rightarrow0\le100-4y^2\le100\)

\(\Rightarrow y\in\left\{0;\pm1;\pm2;\pm3;\pm4;\pm5\right\}\)

Ta có các TH sau:

Nếu \(y=0\Rightarrow x^2=100\Rightarrow x=\pm10\)

Nếu \(y=\pm3\Leftrightarrow\orbr{\begin{cases}\left(x-9\right)^2=64\\\left(x+9\right)^2=64\end{cases}}\Rightarrow x\in\left\{17;1;-17;-1\right\}\)

... Tự làm tiếp nhé

31 tháng 1 2019

dễ

x2 + y2 + xy = x2y2

x2 + xy + y2 - x2y2 = 0

4x2 + 4xy + 4y2 - 4x2y2 = 0

( 4x2 + 8xy + 4y2 ) - ( 4x2y2 + 8xy + 1 ) = -1       ( thêm - 1 )

( 2x + 2y )2 - ( 2xy + 1 )2 = -1

( 2x + 2y - 2xy - 1 ) ( 2x + 2y + 2xy + 1 ) = -1

\(\Rightarrow\)\(\hept{\begin{cases}2x+2y-2xy-1=1\\2x+2y+2xy+1=-1\end{cases}}\)hoặc \(\hept{\begin{cases}2x+2y-2xy-1=-1\\2x+2y+2xy+1=1\end{cases}}\)

suy ra tìm đc ( x; y ) \(\in\){ ( 0 ; 0 ) ; ( -1 ; 1 ) ; ( 1 ; -1 ) }

SKT-STT giúp mk bài tập này vs 

Tìm các số nguyên x dể bt \(A=\frac{x^5+1}{x^3+1}\)   có giá trị là số nguyên

10 tháng 3 2020

\(x^2-2y^2-5=0\Rightarrow x^2=5+2y^2\)(1)

\(\Rightarrow\)x là số lẻ

Đặt x=2k+1 (k thuộc Z)

Khi đó: (1) \(\Leftrightarrow\left(2k+1\right)^2=5+2y^2\Leftrightarrow2y^2=4k^2+4k-4\)

\(\Leftrightarrow y^2=2\left(k^2+k-1\right)\)(2)

\(\Rightarrow\) y là số chẵn

Đặt \(y=2n\)\(\left(n\in Z\right)\)

khi đó:

(2) \(\Leftrightarrow4n^2=2\left(k^2+k-1\right)\Leftrightarrow2n^2+1=k\left(k+1\right)\)(3)

Xét (3) ta thấy: VT lẻ, VP chẵn ( do VP bằng tích hai số nguyên liên tiếp )

Do đó, phương trình vô nghiệm, ko có x,y nguyên thỏa mãn phương trình

21 tháng 2 2020

dùng denta là xong ngay ấy bạn

21 tháng 2 2020

(Đưa về phương trình bậc 2 ẩn yy, tham số xx)

Pt ⇔2y2+(3x−1)y+x2−2x−6=0⇔2y2+(3x−1)y+x2−2x−6=0

Δ=(3x−1)2−4.2(x2−2x−6)=x2+10x+49=(x+5)2+24>0∀xΔ=(3x−1)2−4.2(x2−2x−6)=x2+10x+49=(x+5)2+24>0∀x

Để phương trình đã cho có nghiệm nguyên thì Δ=(x+5)2+24Δ=(x+5)2+24 phải là một số chính phương.

Đặt (x+5)2+24=k2(k∈N∗)⇔(x+5)2−k2=−24⇔(x+5−k)(x+5+k)=−24=−12.2=−6.4=−4.6=−2.12(x+5)2+24=k2(k∈N∗)⇔(x+5)2−k2=−24⇔(x+5−k)(x+5+k)=−24=−12.2=−6.4=−4.6=−2.12(tích của 2 số nguyên có tổng chẵn, (số bé .số lớn)

Lập bảng xét giá trị ta được các giá trị của xx và yy:

x=−10→y=6tm;x=−10→y=6tm;

x=−6→y=6tm;x=−6→y=6tm;

x=−4→y=4,5ktm;x=−4→y=4,5ktm;

x=0→y=2tmx=0→y=2tm

Vậy...