Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm các số(nghiệm) x , y , z trong phương trình sau :
\(x^{2016}+\left|y-2015\right|+\sqrt{z^2+4}=2\)
Có: \(z^2\ge0\forall z\Rightarrow z^2+4\ge4\forall z\Rightarrow\sqrt{z^2+4}\ge\sqrt{4}=2\forall z\)
Mà \(x^{2016}+\left|y-2015\right|+\sqrt{z^2+4}=2\)
\(\Rightarrow\sqrt{z^2+4}=2\)\(\Rightarrow z^2+4=4\Rightarrow z^2=0\Rightarrow z=0\)
Lúc này ta có: x2016 + |y - 2015| = 0
Mà \(x^{2016}\ge0;\left|y-2015\right|\ge0\forall x;y\)
nên \(\begin{cases}x^{2016}=0\\\left|y-2015\right|=0\end{cases}\)\(\Rightarrow\begin{cases}x=0\\y-2015=0\end{cases}\)\(\Rightarrow\begin{cases}x=0\\y=2015\end{cases}\)
Vậy phương trình trên có nghiệm x = 0; y = 2015; z = 0
\(VD3,\sqrt{x+\sqrt{x}}=y\left(x\ge0\right)\)
\(\Leftrightarrow\hept{\begin{cases}y\ge0\\x+\sqrt{x}=y^2\end{cases}}\)
Dễ thấy x phải là số chính phương
Đặt \(x=a^2\left(a\in N\right)\)
\(\Rightarrow a^2+a=y^2\)
\(\Leftrightarrow a\left(a+1\right)=y^2\)
Vì VP là số chính phương nên \(a\left(a+1\right)\)là số chính phương
Mà a và a + 1 là 2 số tự nhiên liên tiếp và a < a + 1
Nên a = 0 (tích 2 số nguyên liên tiếp là 1 scp thì phải có 1 số bằng 0 mà a < a + 1 nên a = 0)
Khi đó x = 0 ; y = 0
Vậy pt có nghiệm nguyên (x;y)=(0;0)
VD1
<=> \(\left(\frac{3}{5}\right)^x+\left(\frac{4}{5}\right)^x=1\)
+ \(x=0;1\)không thỏa mãn
+ \(x=2\)=> \(\left(\frac{3}{5}\right)^2+\left(\frac{4}{5}\right)^2=1\)đúng
+ \(x>2\)
=> \(\left(\frac{3}{5}\right)^x< \left(\frac{3}{5}\right)^2,\left(\frac{4}{5}\right)^x< \left(\frac{4}{5}\right)^2\)
=> \(VT< 1\)(loại)
Vậy x=2
Bài 1 :
\(A=x^2-2xy^2+y^4=\left(x-y^2\right)^2=-\left(y^2-x\right)^2\)
Mà \(B=-\left(y^2-x\right)^2\)
Nên ta có : đpcm
Bài 2
Đặt \(\left(x+1\right)\left(x-2\right)\left(2x-1\right)=0\)
TH1 : x = -1
TH2 : x = 2
TH3 : x = 1/2
Bài 4 :
a, \(\left(2x+3\right)\left(5-x\right)=0\Leftrightarrow x=-\frac{3}{2};5\)
b, \(\left(x-\frac{1}{2}\right)\left(3x+1\right)\left(2-x\right)=0\Leftrightarrow x=\frac{1}{2};-\frac{1}{3};2\)
c, \(x^2+2x=0\Leftrightarrow x\left(x+2\right)=0\Leftrightarrow x=0;-2\)
d, \(x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow x=0;1\)
Ta có:
\(y^3=\left(x-2\right)^4-x^4\)
\(\Leftrightarrow y^3=-8\left(x-1\right)\left(x^2-2x+2\right)\)
\(\Rightarrow\)y là số chẵn
Đặt \(y=-2k\left(k\in Z\right)\)
\(\Rightarrow-8k^3=-8\left(x-1\right)\left(x^2-2x+2\right)\)
\(\Leftrightarrow k^3=\left(x-1\right)\left(x^2-2x+2\right)\)
Đễ dàng chứng minh được \(\left(x-1\right);\left(x^2-2x+2\right)\) nguyên tố cùng nhau
\(\Rightarrow\hept{\begin{cases}x-1=m^3\\x^2-2x+2=n^3\end{cases}}\)
\(\Rightarrow n^3=m^6+1\)
Ta lại có: \(m^6< m^6+1\le\left(m^2+1\right)^3\)
\(\Rightarrow m^6+1=\left(m^2+1\right)^3\)
\(\Leftrightarrow m^2\left(m^2+1\right)=0\)
\(\Leftrightarrow m=0\)
\(\Rightarrow\hept{\begin{cases}x=1\\y=0\end{cases}}\)