Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4.
(1) => y=2m-mx thay vào (2) ta được x+m(2m-mx)=m+1
<=> x-m2x=-2m2+m+1
<=> x(1-m)(1+m)=-(m-1)(1+2m)
với m=-1 thì pt vô nghiệm
với m=1 thì pt vô số nghiệm => có nghiệm nguyên => chọn
với m\(\ne\pm\) 1 thì x=\(\frac{-2m-1}{m+1}\)=\(-2+\frac{1}{m+1}\)
=> y=2m-mx=xm-m(-2+\(\frac{1}{m+1}\)) =2m+2m-\(\frac{m}{m+1}\)=4m-1+\(\frac{1}{m+1}\)
để x y nguyên thì \(\frac{1}{m+1}\)nguyên ( do m nguyên)
=> m+1\(\in\)Ư(1)={1;-1}
=> m\(\in\){0;-2} mà m nguyên âm nên m=-2
vậy m=-2 thì ...
P/s hình như 1 2 3 sai đề
\(2x^2+3y^2+4x=19\)
<=> \(2\left(x^2+2x+1\right)+3y^2=21\)
<=> \(2\left(x+1\right)^2+3y^2=21\)
<=> \(2\left(x+1\right)^2=21-3y^2\ge0\)
=> \(y^2\le7\)(1)
Mặt khác \(2\left(x+1\right)^2=21-3y^2⋮2\)
=> 21 - 3y^2 là số chẵn => 3y^2 là số lẻ => y^2 là số chính phương lẻ (2)
Từ (1) và (2) => y = 1 hoặc y = - 1=> y^2 = 1
=> 2 (x + 1)^2 = 18 <=> (x + 1 ) = 9 <=> x + 1 = 3 hoặc x + 1 = - 3 <=> x = 2 hoặc x = -4
Vậy phương trình có 4 nghiệm ( 2; 1) (2; -1); (-4; 1 ); (-4; -1)
Bài 1 :
a) \(x^3-x^2-x-2=0\)
\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2=0\)
\(\Leftrightarrow\left(x^3-2x^2\right)+\left(x^2-2x\right)+\left(x-2\right)=0\)
\(\Leftrightarrow x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)=0\)(1)
Vì \(x^2+x+1=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
\(\Rightarrow x^2+x+1\ge\frac{3}{4}\forall x\)(2)
Từ (1) và (2) \(\Rightarrow x-2=0\)\(\Leftrightarrow x=2\)
Vậy \(x=2\)
Bài 2:
\(2x^2+y^2-2xy+2y-6x+5=0\)
\(\Leftrightarrow x^2-2xy+y^2-2x+2y+1+x^2-4x+4=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)-\left(2x-2y\right)+1+\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2-2\left(x-y\right)+1+\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x-y-1\right)^2+\left(x-2\right)^2=0\)(1)
Vì \(\left(x-y-1\right)^2\ge0\forall x,y\); \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-y-1\right)^2+\left(x-2\right)^2\ge0\forall x,y\)(2)
Từ (1) và (2) \(\Rightarrow\left(x-y-1\right)^2+\left(x-y\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-y-1=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=x-1\\x=2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=2\end{cases}}\)
Vậy \(x=2\)và \(y=1\)
xy - 2x - 3y + 1 = 0
<=> x(y - 2) = 3y - 1
<=> \(=\frac{3y-1}{y-2}=3+\frac{5}{y-2}\)
Để x nguyên thì (y - 2) phải là ước của 5 hay
(y - 2) = (1, 5, - 1, - 5)
Giải tiếp sẽ ra
<=> x2 + (3y - 2)x + (2y2 - 4y + 3) = 0 (1)
Coi (1) là phương trình bậc 2 ẩn x
\(\Delta\) = (3y - 2)2 - 4 (2y2 - 4y + 3) = 9y2 - 12y + 4 - 8y2 + 16y - 12 = y2 + 4y - 8
Để (1) có nghiệm x; y nguyên <=> \(\Delta\) là số chính phương
<=> y2 + 4y - 8 = k2 (k nguyên)
<=> y2 + 4y + 4 - k2 = 12
<=> (y +2)2 - k2 = 12 <=> (y + 2 + k).(y + 2 - k) = 12
=> (y + 2 + k) \(\in\) Ư(12) = {12;-12;3;-3;4;-4;6;-6;2;-2;1;-1}
y+2+k | 12 | -12 | 1 | -1 | 3 | -3 | 4 | -4 | 2 | -2 | 6 | -6 |
y+2-k | 1 | -1 | 12 | -12 | 4 | -4 | 3 | -3 | 6 | -6 | 2 | -2 |
k | 13/2 (L) | -11/2 (L) | -11/2 (L) | 11/2(L) | -1/2(L) | 1/2(L) | 1/2(L) | -1/2(L) | -2 | 2 | 2 | -2 |
y | 2 | -6 | 2 | -6 |
Vậy y = -6 hoặc y = 2
Thay y = -6 vào (1) => x2 -20x + 99 = 0 <=> x = 11 hoặc x = 9
Thay y = 2 vào (1) => x2 + 4x + 3 = 0 <=> x = -1 hoặc x = -3
Vậy ...
\(\Leftrightarrow\left(x-1\right)^2=27y^3+1\)
\(\Leftrightarrow\left(x-1\right)^2=\left(3y+1\right)\left(9y^2-3y+1\right)\)
Gọi \(d=ƯC\left(3y+1;9y^2-3y+1\right)\)
\(\Rightarrow3y\left(3y^2+1\right)-\left(9y^2-3y+1\right)⋮d\)
\(\Rightarrow6y-1⋮d\)
\(\Rightarrow2\left(3y+1\right)-\left(6y-1\right)⋮d\)
\(\Rightarrow3⋮d\)
Mà \(3y+1⋮d\Rightarrow d\ne3\)
\(\Rightarrow d=1\)
\(\Rightarrow3y+1\) và \(9y^2-3y+1\) nguyên tố cùng nhau
\(\Rightarrow3y+1\) và \(9y^2-3y+1\) đều là SCP
\(\Rightarrow9y^2-3y+1=n^2\)
\(\Leftrightarrow36y^2-12y+4=4n^2\)
\(\Leftrightarrow\left(6y-1\right)^2+3=\left(2n\right)^2\)
\(\Leftrightarrow\left(2n+6y-1\right)\left(2n-6y+1\right)=3\)
\(\Rightarrow y=0\Rightarrow x=\left\{0;2\right\}\)