K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
13 tháng 7 2021

\(y^2=x\left(x+1\right)\left(x+7\right)\left(x+8\right)\)

\(=\left(x^2+8x\right)\left(x^2+8x+7\right)\)

\(\Rightarrow4y^2=\left(2x^2+16x\right)\left(2x^2+16x+14\right)\)

\(=\left(2x^2+16x+7-7\right)\left(2x^2+16x+7+7\right)\)

\(=\left(2x^2+16x+7\right)^2-49\)

\(\Leftrightarrow\left(2x^2+16x+7\right)^2-4y^2=49\)

\(\Leftrightarrow\left(2x^2+16x+7-2y\right)\left(2x^2+16x+7+2y\right)=49=1.49=7.7\)

Xét các trường hợp và thu được các nghiệm là: \(\left(-3,0\right),\left(0,0\right)\).

14 tháng 9

Bước 1: Xét các trường hợp nhỏ

Phương trình:

\(2^{x} - 3^{y} = 1 \Rightarrow 2^{x} = 3^{y} + 1\)

Cả hai số \(2^{x}\)\(3^{y} + 1\) đều là số nguyên dương, vậy \(x \geq 1\), \(y \geq 0\).


Bước 2: Thử với các số nguyên nhỏ

  1. y = 0:

\(2^{x} = 3^{0} + 1 = 1 + 1 = 2 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } x = 1\)

✅ Giải được: \(\left(\right. x , y \left.\right) = \left(\right. 1 , 0 \left.\right)\)

  1. y = 1:

\(2^{x} = 3^{1} + 1 = 4 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } x = 2\)

✅ Giải được: \(\left(\right. x , y \left.\right) = \left(\right. 2 , 1 \left.\right)\)

  1. y = 2:

\(2^{x} = 3^{2} + 1 = 9 + 1 = 10 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } x = \left(log ⁡\right)_{2} 10 \notin \mathbb{Z}\)

❌ Không có nghiệm nguyên

  1. y = 3:

\(2^{x} = 3^{3} + 1 = 27 + 1 = 28 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } x = \left(log ⁡\right)_{2} 28 \notin \mathbb{Z}\)

❌ Không có nghiệm nguyên

  1. y = 4:

\(2^{x} = 3^{4} + 1 = 81 + 1 = 82 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } x = \left(log ⁡\right)_{2} 82 \notin \mathbb{Z}\)

❌ Không có nghiệm nguyên


Bước 3: Kiểm tra tính khả thi tổng quát

  • Khi \(y \geq 3\), \(3^{y} \equiv 0 \left(\right. m o d 9 \left.\right) \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } 3^{y} + 1 \equiv 1 \left(\right. m o d 9 \left.\right)\)
  • Các lũy thừa của 2: \(2^{x} m o d \textrm{ } \textrm{ } 9\) lặp theo chu kỳ: 2, 4, 8, 7, 5, 1,…
  • Xét \(2^{x} \equiv 1 \left(\right. m o d 3 \left.\right)\) hay \(2^{x} - 1 = 3^{y}\), theo định lý Catalan, nghiệm duy nhất cho phương trình lũy thừa cách nhau 1\(\left(\right. x , y \left.\right) = \left(\right. 3 , 2 \left.\right)\) cho phương trình \(3^{2} - 2^{3} = 1\), nhưng ở đây thứ tự khác nên chỉ có các nghiệm nhỏ đã tìm.

Do đó, không có nghiệm lớn hơn.


✅ Kết luận

Các nghiệm nguyên của phương trình \(2^{x} - 3^{y} = 1\) là:

\(\boxed{\left(\right. x , y \left.\right) = \left(\right. 1 , 0 \left.\right) \&\text{nbsp};\text{v} \overset{ˋ}{\text{a}} \&\text{nbsp}; \left(\right. x , y \left.\right) = \left(\right. 2 , 1 \left.\right)}\)

24 tháng 6 2018

Với x = 0 thì \(y=\pm1\)

Xét \(x\ne0\). Từ phương trình, ta có: \(4y^2=\left(2x^2+x\right)^2+3x^2+4x+4>\left(2x^2+x\right)^2\)

Hơn nữa: \(4y^2=\left(2x^2+x+2\right)^2-5x^2< \left(2x^2+x+2\right)^2\)

Suy ra: \(\left(2x^2+x\right)^2< 4y^2< \left(2x^2+x+2\right)^2\)

Do đó, ta có: \(4y^2=\left(2x^2+x+1\right)^2\) hay \(3\left(1+x+x^2+x^3+x^4\right)=\left(2x^2+x+1\right)^2\)

giải phương trình này, ta được: x = -1 haowcj x = 3

Từ đó => Nghiệm của phương trình là: (0;1);(0;-1);(-1;1);(-1;-1);(3;11);(3;-11)

24 tháng 6 2018

đã xong , xin tích trc rồi ta làm :)

\(a)\)

\(\frac{1}{x+1}-\frac{x-1}{x}=\frac{3x+1}{x\left(x+1\right)}\)

\(\Leftrightarrow x-x^2+1=3x+1\)

\(\Leftrightarrow x^2-2x=0\)

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

\(b)\)

\(\frac{\left(x+2\right)^2}{2x-3}-\frac{1}{1}=\frac{x^2+10}{2x-3}\)

\(\Leftrightarrow x^2+4x+4-2x-3=x^2+10\)

\(\Leftrightarrow x^2+2x+1=x^2+10\)

\(\Leftrightarrow2x-9=0\)

\(\Leftrightarrow2x=9\)

\(\Leftrightarrow x=\frac{2}{9}\)

AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Bạn cần viết đề bằng công thức toán ( biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.

15 tháng 8 2023

x/y = 2/5 ⇒ x/2 = y/5

⇒ x/5 = 2y/10

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

x/2 = 2y/10 = (x + 2y)/(2 + 10) = 36/12 = 3

x/2 = 3 ⇒ x = 2 . 3 = 6

y/5 = 3 ⇒ y = 5 . 3 = 15

Vậy x = 6; y = 10

15 tháng 8 2023

cảm ơn bạn nhiều ạyeu

5 tháng 3 2020

\(x^2+3xy+y^2=x^2y^2^{^{\left(1\right)}}\)

\(\Leftrightarrow x^2+2xy+y^2=x^2y^2-xy\)

\(\Leftrightarrow\left(x+y\right)^2=xy\left(xy-1\right)\)

Vì xy(xy-1) là 2 số nguyên liên tiếp có tích là 1 số chính phương 

=> xy=0 hoặc xy-1 =0 

+) Nếu xy=0 thay vào (1) ta có 

\(x^2+y^2=0\Leftrightarrow x=y=0\)

+)Nếu xy-1 =0 hay xy=1 ta có 

\(x^2+y^2+3=1\Leftrightarrow x^2+y^2=-2\left(loại\right)\)

Vậy x=0 ; y=0

5 tháng 3 2020

Đoạn số chính phương rồi suy ra xy mình chưa hiểu lắm,bạn gthich tí dc 0