K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2017

2y^2+(2x+9)y+x^2+4x+3=0

14 tháng 11 2017

Ta có \(x^2+2xy+y^2+y^2=4-3y\)\(\Leftrightarrow\left(x+y\right)^2+y^2=4-3y\).
Suy ra \(4-3y>0\Leftrightarrow3y< 4\).
Do y nguyên dương nên \(y=1\).
Thay vào phương trình ta có: \(\left(x+1\right)^2+1^2=4-3.1\) \(\Leftrightarrow\left(x+1\right)^2=0\)\(\Leftrightarrow x+1=0\)\(\Leftrightarrow x=-1\). (Loại vì x nguyên dương).
Vậy không có giá trị nào của x thỏa mãn.

8 tháng 2 2019

\(x^2+2y^2+2xy+3y-4=0\)

\(\Leftrightarrow x^2+2xy+\left(2y^2+3y-4\right)=0\)

Coi phương trình trên có ẩn là x.

Phương trình có nghiệm khi \(\Delta'=y^2-\left(2y^2+3y-4\right)\ge0\)

\(\Leftrightarrow-y^2-3y+4\ge0\)\(\Leftrightarrow y^2+3y-4\le0\)

\(\Leftrightarrow\left(y-1\right)\left(y+4\right)\le0\Leftrightarrow-4\le y\le1\)

Thay vào từng giá trị nguyên của y để tìm x=)

Câu 1: Xác định m và n để phương trình (ần x): x2 + mx + n = 0 có hai nghiệm là m và n. Câu 2: Chứng tỏ phương trình bậc hai (ần x): x2 + mx = m2+ m + 1 luôn có hai nghiệm trái dấu mọi m. Câu 3: Tìm k để phương trình bậc hai (ẩn x): x2 – (k + 2)x + k – 1 = 0 có hai nghiệm đối nhau. Câu 4: \(\sqrt{2x-2+2\sqrt{2x-3}}\) +\(\sqrt{2x+13+8\sqrt{2x-3}}\) =7 giải phương trình trên. Câu 5: Chứng minh rằng nếu a + b ≥ 2...
Đọc tiếp

Câu 1: Xác định m và n để phương trình (ần x): x2 + mx + n = 0 có hai nghiệm là m và n.

Câu 2: Chứng tỏ phương trình bậc hai (ần x): x2 + mx = m2+ m + 1 luôn có hai nghiệm trái dấu mọi m.

Câu 3: Tìm k để phương trình bậc hai (ẩn x): x2 – (k + 2)x + k – 1 = 0 có hai nghiệm đối nhau.

Câu 4: \(\sqrt{2x-2+2\sqrt{2x-3}}\) +\(\sqrt{2x+13+8\sqrt{2x-3}}\) =7 giải phương trình trên.

Câu 5: Chứng minh rằng nếu a + b ≥ 2 thì ít nhất một trong hai phương trình sau có nghiệm:
x2 + 2ax + b = 0 ; x2 + 2bx + a = 0 .

Câu 6: Cho ba phương trình: ax2 + 2bx + c = 0; bx2 + 2cx + a = 0; cx2 + 2ax + b = 0 ( a, b, c ≠0 ).
Chứng minh rằng ít nhất một trong ba phương trình trên phải có nghiệm.

Câu 7: Cho (x; y) là nghiệm của phương trình x2 + 3y2+ 2xy – 10x – 14y + 18 = 0. Tìm GTLN và GTNN của biểu thức S = x + y.
Câu 8: Cho phương trình bậc hai x2 + ax + b = 0. Xác định a và b để phương trình có hai nghiệm là a và b.

0
22 tháng 5 2017

pt ở đề bài <=> x^2-2x(y-2)-(3y-1)=0 (1) 

để pt có nghiệm x nguyên thì delta phải là số chính phương 

xét delta=[2(y-2)]^2+4=a^2 => a^2-(2y-4)^2=4=>(a-2y+4)(a+2y-4)=4 đến đây giải pt ước số rồi tìm y => tìm x 

-nghĩ vậy chả biết có đúng không <(")

2 tháng 3 2018

Sử dụng định lí Vi-ét:

\(\frac{2}{x_1}+\frac{2}{x_2}=3\Leftrightarrow\frac{2\left(x_1+x_2\right)}{x_1.x_2}=3\)(*)

Tính ∆' tìm điều kiện của m để phương trình có 2 nghiệm phân biệt.

Sau đó bạn viết định lí Vi-ét và áp dụng và (*) 

Kết hợp cả hai điều kiện lại là ra kết quả đúng.

4 tháng 3 2018

Cảm ơn ạ