K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2020

a) \(5x-3y=2xy-11\)

\(\Leftrightarrow2xy-5x+3y-11=0\)

\(\Leftrightarrow4xy-10x+6y-22=0\)

\(\Leftrightarrow2x\left(2y-5\right)+3\left(2y-5\right)=7\)

\(\Leftrightarrow\left(2x+3\right)\left(2y-5\right)=7=1.7=\left(-1\right).\left(-7\right)\)

Xét các TH sau:

Nếu \(\hept{\begin{cases}2x+3=1\\2y-5=7\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=6\end{cases}}\)

Nếu \(\hept{\begin{cases}2x+3=7\\2y-5=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)

Nếu \(\hept{\begin{cases}2x+3=-1\\2y-5=-7\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-1\end{cases}}\)

Nếu \(\hept{\begin{cases}2x+3=-7\\2y-5=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=2\end{cases}}\)

KL:...

29 tháng 8 2021

ai giúp em bài1 và phần b bài 2 với ạ

 

14 tháng 2 2016

phân tích pt ta được: \(\left(2x-3\right)\left(7-2y\right)=-35\)

24 tháng 9 2019

Ta có 5x – 3y = 8  ⇔ y = 5 x − 8 3 = 2 x − x + 8 3

Đặt x + 8 3 = t t ∈ ℤ ⇒ x = 3t – 8 ⇒ y = 2 x − x + 8 3 = 2(3t – 8) – t = 5t – 16

⇒ x = 3 t − 8 y = 5 t − 16 t ∈ ℤ

Đáp án: A

19 tháng 10 2017

ta có: \(5x-3y=2xy-11\)

<=>\(2x-2xy+3-3y+3x=-8\)

<=>\(2x\left(1-y\right)+3\left(1-y\right)+\frac{3}{2}\left(2x+3\right)=-\frac{7}{2}\)

<=>\(\left(2x+3\right)\left(1-y\right)+\frac{3}{2}\left(2x+3\right)=-\frac{7}{2}\)

<=>\(\left(2x+3\right)\left(1-y+\frac{3}{2}\right)=-\frac{7}{2}\)

<=>\(\left(2x+3\right)\left(2-2y+3\right)=-7\) 

TH1: \(\hept{\begin{cases}2x+3=1\\2-2y+3=-7\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=6\end{cases}}}\)

TH2:\(\hept{\begin{cases}2x+3=-1\\2-2y+3=7\end{cases}\Rightarrow\hept{\begin{cases}x=-2\\y=-1\end{cases}}}\)

TH3:\(\hept{\begin{cases}2x+3=7\\2-2y+3=-1\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}}\)

TH4:\(\hept{\begin{cases}2x+3=-7\\2-2y+3=1\end{cases}\Rightarrow\hept{\begin{cases}x=-5\\y=2\end{cases}}}\)

Vậy nghiệm của pt là: (x;y)={  (-1;6);(-2;-1);(2;3);(-5;2)}

28 tháng 6 2023

a) \(x^2-3xy+3y^2=3y\)

Rõ ràng \(x⋮y\) nên đặt \(x=ky\left(k\inℤ\right)\). Pt trở thành:

\(k^2y^2-3ky^2+3y^2=3y\)

\(\Leftrightarrow\left[{}\begin{matrix}y=0\\k^2y-3ky+3y=3\end{matrix}\right.\).

Khi \(y=0\) \(\Rightarrow x=0\).

Khi \(k^2y-3ky+3y=3\)

\(\Leftrightarrow y\left(k^2-3k+3\right)=3\)

Ta lập bảng giá trị:

\(y\) 1 3 -1 -3
\(k^2-3k+3\) 3 1 -3 -1
\(k\) 0 hoặc 3 1 hoặc 2 vô nghiệm vô nghiệm
\(x\) 0 (loại) hoặc 3 (nhận) 3 (nhận) hoặc 6 (nhận)    

Vậy pt đã cho có các nghiệm \(\left(0;0\right);\left(3;1\right);\left(3;3\right);\left(6;3\right)\)

b) \(x^2-2xy+5y^2=y+1\)

\(\Leftrightarrow x^2-2yx+5y^2-y-1=0\)

\(\Delta'=\left(-y\right)^2-\left(5y^2-y-1\right)\) \(=-4y^2+y+1\)

Để pt đã cho có nghiệm thì \(-4y^2+y+1\ge0\), giải bpt thu được \(\dfrac{1-\sqrt{17}}{8}\le y\le\dfrac{1+\sqrt{17}}{8}\). Mà lại có \(-1< \dfrac{1-\sqrt{17}}{8}< 0< \dfrac{1+\sqrt{17}}{8}< 1\) nên suy ra \(y=0\). Từ đó tìm được \(x=\pm1\). Vậy pt đã cho có các nghiệm \(\left(1;0\right);\left(-1;0\right)\)

8 tháng 2 2019

PT \(\Leftrightarrow\left(3x^2-5x\right)-2xy+\left(y+2\right)=0\)

Xét \(\Delta'=y^2-\left(y+2\right)\ge0\Leftrightarrow y^2-y-2\ge0\)

\(\Leftrightarrow-y^2+y+2\le0\Leftrightarrow\left(y-2\right)\left(y+1\right)\)

\(\Leftrightarrow-1\le y\le2\)

Thế vô làm tiếp :v