Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
c) ĐKXĐ: \(x\notin\left\{\dfrac{1}{4};-\dfrac{1}{4}\right\}\)
Ta có: \(\dfrac{3}{1-4x}=\dfrac{2}{4x+1}-\dfrac{8+6x}{16x^2-1}\)
\(\Leftrightarrow\dfrac{-3\left(4x+1\right)}{\left(4x-1\right)\left(4x+1\right)}=\dfrac{2\left(4x-1\right)}{\left(4x+1\right)\left(4x-1\right)}-\dfrac{6x+8}{\left(4x-1\right)\left(4x+1\right)}\)
Suy ra: \(-12x-3=8x-2-6x-8\)
\(\Leftrightarrow-12x-3-2x+10=0\)
\(\Leftrightarrow-14x+7=0\)
\(\Leftrightarrow-14x=-7\)
\(\Leftrightarrow x=\dfrac{1}{2}\)(nhận)
Vậy: \(S=\left\{\dfrac{1}{2}\right\}\)
a)11x-7<8x+7
<-->11x-8x<7+7
<-->3x<14
<--->x<14/3 mà x nguyên dương
---->x \(\in\){0;1;2;3;4}
b)x^2+2x+8/2-x^2-x+1>x^2-x+1/3-x+1/4
<-->6x^2+12x+48-2x^2+2x-2>4x^2-4x+4-3x-3(bo mau)
<--->6x^2+12x-2x^2+2x-4x^2+4x+3x>4-3+2-48
<--->21x>-45
--->x>-45/21=-15/7 mà x nguyên âm
----->x \(\in\){-1;-2}
a,với x=1 có : 1+a-4-4=0 => a=7
b, với a= 7 phương trình trở thành
x3+7x2-4x-4=0 <=> \(x^3-x^2+8x^2-8x+4x-4=0\Leftrightarrow x^2\left(x-1\right)+8x\left(x-1\right)+4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+8x+4\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\\left(x^2+8x+4\right)=0\end{cases}}\)
giải \(\left(x^2+8x+4\right)=0\)có \(\Delta'=4^2-1.4=12\Rightarrow\orbr{\begin{cases}x=-4+2\sqrt{3}\\x=-4-2\sqrt{3}\end{cases}}\)
không nhìn đề ak.đa bảo là số chính phương thì vế trái của nó là 1 sô chính phương hay nói cách khác là =k2
Cho phương trình (ẩn x): x3 + ax2 – 4x – 4 = 0
a) Xác định m để phương trình có một nghiệm x = 1.
b) Với giá trị m vừa tìm được, tìm các nghiệm còn lại của phương trình.
Trên phương trình có m đâu mà tìm m vậy ? Mình sửa :
\(x^3+mx^2-4x-4=0\)(1)
a) Thay \(x=1\), phương trình (1) trở thành :
\(1^3+m.1^2-4.1-4=0\)
\(\Leftrightarrow1+m-4-4=0\)
\(\Leftrightarrow m-7=0\)
\(\Leftrightarrow m=7\)
Vậy \(x=1\Leftrightarrow m=7\)
b) Thay \(m=7\), phương trình (1) trở thành :
\(x^3+7x^2-4x-4=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+8x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+8x+4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\\left(x+4\right)^2-12=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\\left(x+4-2\sqrt{3}\right)\left(x+4+2\sqrt{3}\right)=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x\in\left\{2\sqrt{3}-4;-2\sqrt{3}-4\right\}\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{1;2\sqrt{3}-4;-2\sqrt{3}-4\right\}\)
<=> 3 ( x3 - 1) - 4x2 - 4x - 4 =0
<=> 3x3 - 3 - 4x2 - 4x - 4 = 0
<=> -x2 - 4x - 7 = 0
<=> - ( x2 + 4x + 4 + 3) = 0
<=> - ( x + 2 )2 - 3 = 0
vì ( x + 2 )2 >= 0 V x
<=> - (x + 2) 2 <= 0 V x
<=> - (x + 2) 2 - 3 <= -3
phương trình vô nghiệm
<=> 3 ( x3 - 1) - 4x2 - 4x - 4 =0
<=> 3x3 - 3 - 4x2 - 4x - 4 = 0
<=> -x2 - 4x - 7 = 0
<=> - ( x2 + 4x + 4 + 3) = 0
<=> - ( x + 2 )2 - 3 = 0
vì ( x + 2 )2 >= 0 V x
<=> - (x + 2) 2 <= 0 V x
<=> - (x + 2) 2 - 3 <= -3
phương trình vô nghiệm