Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$x^2-2xy+5y^2=y+1$
$\Leftrightarrow x^2-2xy+y^2=y+1-4y^2$
$\Leftrightarrow y+1-4y^2=(x-y)^2\geq 0$
$\Leftrightarrow y+1-4y^2\geq 0$
$\Leftrightarrow 4y^2-y-1\leq 0$
$\Leftrightarrow 4y^2-y-3\leq -2<0$
$\Leftrightarrow (y-1)(4y+3)<0$
$\Leftrightarrow \frac{-3}{4}< y< 1$
$y$ nguyên nên $y=0$
Khi đó: $x^2=1\Leftrightarrow x=\pm 1$
Vậy $(x,y)=(\pm 1,0)$
chac lam the nay a, x-3y=5
=>x=5+3y
=>y=x-5/3
vậy nghiêm nguyên của pt la x;y = 5+3y ; y=x-5 /3 voi x,y thuoc Z b,c tuong tu
Ta có : 4x + 5y = 21
<=> 4x = 21 - 5y
<=> x = \(\frac{21-5y}{4}\)
Để x nguyên thì : \(\frac{21-5y}{4}\) nguyên
<=> 21 - 5y thuộc B(4) = {0;4;8;12;......}
<=> 5y thuộc {21;18;14;10;......}
<=> y = 5
Vậy y = 5 => 4x = 21 - 5.5 = -4 => x = -1
Ta có : xy-45=35-5y
<=> xy+5y= 35+45
<=> y(x+5) = 80
*Nếu x= -5 thì ta có y( -5 +5 ) = 80
<=> 0=80( Vô nghiệm)
Suy ra : x khác -5
=> x+5 khác 0
Ta có : y(x+5) = 80
\(\Leftrightarrow\) \(y=\frac{80}{x+5}\)
Mà \(y\in Z\)nên \(\frac{80}{x+5}\in Z\).
\(\Leftrightarrow80⋮x+5\)\(\Leftrightarrow x+5\inƯ\left(80\right)\)
\(\Leftrightarrow x+5\in\hept{ }-80;-40;-20;-16;-10;-8;-5;-4;-2;-1;1;2;4;5;8;10;16;20;40;80\)
Bạn giải x ra , sau đó tìm ra y , chứ dài qua mình không ghi trên này được @@
\(x=\frac{21-5y}{4}=\frac{20-4y+1-y}{4}=5-y+\frac{1-y}{4}\)
=> Để x nguyên thì 1-y = 4k (k thuộc Z) => y=1-4k
x=5-1+4k+k = 5k+4
Vậy các cặp (x,y) thuộc Z thỏa mãn là (5k+4; 1-4k) với k thuộc Z