Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5x^2+x\left(5y-7\right)+5y^2-14y=0\)
\(\Delta=\left(5y-7\right)^2-4.5.\left(5y^2-14y\right)=-75y^2+210y+49\)
Để PT có nghiệm nguyên thì \(\Delta\ge0\)
từ đó tìm được các giá trị nguyên của y, rồi tìm được x
7. \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)
\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)
\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)
Vậy \(S_{min}=1936\) \(\Leftrightarrow\) \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)
7. \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)
\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)
\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)
Vậy \(S_{min}=1936\) \(\Leftrightarrow\) \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)
8. \(x^2-5x+14-4\sqrt{x+1}=0\) (ĐK: x > = -1).
\(\Leftrightarrow\) \(\left(x+1\right)-4\sqrt{x+1}+4+\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow\) \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)
Với mọi x thực ta luôn có: \(\left(\sqrt{x+1}-2\right)^2\ge0\) và \(\left(x-3\right)^2\ge0\)
Suy ra \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2\ge0\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}\left(\sqrt{x+1}-2\right)^2=0\\\left(x-3\right)^2=0\end{cases}}\) \(\Leftrightarrow\) x = 3 (Nhận)
bạn ấn vào đúng 0 sẽ hiện ra kết quả, mình làm bài này rồi dễ lắm
Ta có −5x + 2y = 7 ⇔ 2y = 7 + 5x ⇔ y = 5 x + 7 2 ⇔ y = 2 x + x + 7 2
Đặt x + 7 2 = t ⇒ x = 2t − 7 ⇒ y = 2.(2t − 7) + t ⇔ y = 5t – 14 t ∈ ℤ
Nên nghiệm nguyên của phương trình là x = 2 t − 7 y = 5 t − 14 t ∈ ℤ
Vì x, y nguyên âm nên x < 0 y < 0 ⇒ 2 t − 7 < 0 5 t − 14 < 0 ⇒ t < 7 1 t < 14 5 ⇒ t < 14 5
mà t ∈ ℤ ⇒ t ≤ 2
Vậy nghiệm cần tìm là (−3; −4)
Đáp án: C