K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2018

Ta có −5x + 2y = 7 ⇔ 2y = 7 + 5x ⇔ y = 5 x + 7 2 ⇔ y = 2 x + x + 7 2

Đặt x + 7 2 = t ⇒ x = 2t − 7y = 2.(2t − 7) + t ⇔ y = 5t – 14  t ∈ ℤ

Nên nghiệm nguyên của phương trình là  x = 2 t − 7 y = 5 t − 14 t ∈ ℤ

Vì x, y nguyên âm nên  x < 0 y < 0 ⇒ 2 t − 7 < 0 5 t − 14 < 0 ⇒ t < 7 1 t < 14 5 ⇒ t < 14 5

mà  t ∈ ℤ ⇒ t ≤ 2

Vậy nghiệm cần tìm là (−3; −4)

Đáp án: C

13 tháng 2 2020

x=2 y=3

13 tháng 2 2020

giúp mình với mình cần nộp trong ngày 17/2/2020

28 tháng 10 2016

chiu roi

ban oi

tk nhe

29 tháng 5 2020

\(5x^2+x\left(5y-7\right)+5y^2-14y=0\)

\(\Delta=\left(5y-7\right)^2-4.5.\left(5y^2-14y\right)=-75y^2+210y+49\)

Để PT có nghiệm nguyên thì \(\Delta\ge0\)

từ đó tìm được các giá trị nguyên của y, rồi tìm được x

22 tháng 5 2017

7.  \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)

\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)

\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)

Vậy   \(S_{min}=1936\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)

20 tháng 5 2017

Câu 8 bn tìm cách tách thành   

\(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)

22 tháng 5 2017

7.  \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)

\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)

\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)

Vậy   \(S_{min}=1936\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)

22 tháng 5 2017

8. \(x^2-5x+14-4\sqrt{x+1}=0\)       (ĐK: x > = -1).

\(\Leftrightarrow\)   \(\left(x+1\right)-4\sqrt{x+1}+4+\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\)   \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)

Với mọi x thực ta luôn có:   \(\left(\sqrt{x+1}-2\right)^2\ge0\)   và   \(\left(x-3\right)^2\ge0\) 

Suy ra   \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2\ge0\)

Đẳng thức xảy ra   \(\Leftrightarrow\)   \(\hept{\begin{cases}\left(\sqrt{x+1}-2\right)^2=0\\\left(x-3\right)^2=0\end{cases}}\)    \(\Leftrightarrow\)    x = 3 (Nhận)

bạn ấn vào đúng 0 sẽ hiện ra kết quả, mình làm bài này rồi dễ lắm

26 tháng 1 2016

mấy bạn giải chi tiết giúp mình vs