K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2018

ta có: 2xy+3y=30\(\Leftrightarrow y\left(2x+3\right)=30\Leftrightarrow\)\(y=\frac{30}{2x+3}\Rightarrow2x+3\inƯ\left(30\right)\)MÀ 2x+3 lẻ nên 2x+3={-1;1;-3;3;5;-5;15;-15} phan sau ban tu lam nhe

14 tháng 2 2016

phân tích pt ta được: \(\left(2x-3\right)\left(7-2y\right)=-35\)

22 tháng 5 2017

pt ở đề bài <=> x^2-2x(y-2)-(3y-1)=0 (1) 

để pt có nghiệm x nguyên thì delta phải là số chính phương 

xét delta=[2(y-2)]^2+4=a^2 => a^2-(2y-4)^2=4=>(a-2y+4)(a+2y-4)=4 đến đây giải pt ước số rồi tìm y => tìm x 

-nghĩ vậy chả biết có đúng không <(")

16 tháng 1 2019

\(x^2+2xy+y^2+3y-4=0\)

\(\Rightarrow\Delta'=y^2-\left(2y^2+3y-4\right)\ge0\)

\(\Leftrightarrow-4\le y\le1\)

16 tháng 1 2019

\(\left(x+y\right)^2+\left(y-\frac{3}{2}\right)^2=4\)

mà 4=0^2+2^2

=>\(\orbr{\begin{cases}\hept{\begin{cases}x+y=0\\y-\frac{3}{2}=2\end{cases}}\\\hept{\begin{cases}x+y=2\\y-\frac{3}{2}=0\end{cases}}\end{cases}}\)

=> giải nốt

15 tháng 1 2019

Bài toán :

x^2 + 2*x*y + 2*y^2 + 3*y-4 = 0

Lời giải:

  1. Tập xác định của phương trình

  2. Rút gọn thừa số chung

  3. Giải phương trình

  4. Nghiệm được xác định dưới dạng hàm ẩn

#

15 tháng 1 2019

Bn có thể có lời giải cụ thể cho bài này ko?

9 tháng 9 2018

\(\orbr{\begin{cases}\hept{\begin{cases}\text{x=2}\\y=0\end{cases}}\\\hept{\begin{cases}\text{x=\text{-}1}\\y=1\end{cases}}\end{cases}}\)

4 tháng 2 2019

\(x^2+2y^2+2xy+3y-4=0\)

\(\Leftrightarrow x^2+2xy+y^2+y^2+2.\frac{3}{2}y+\frac{9}{4}-\frac{25}{4}=0\)

\(\Rightarrow\left(x+y\right)^2+\left(y+\frac{3}{2}\right)^2=\frac{25}{4}\)

Do x,y nguyên

\(\Rightarrow\left(y+\frac{3}{2}\right)^2=\orbr{\begin{cases}\frac{25}{4}\\\frac{9}{4}\end{cases}}\)(chọn những số 

\(\Rightarrow y=...\)

\(\Rightarrow x=...\)