Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) dễ tự làm
b) A(x) có bậc 6
hệ số: -1 ; 5 ; 6 ; 9 ; 4 ; 3
B(x) có bậc 6
hệ số: 2 ; -5 ; 3 ; 4 ; 7
c) bó tay
d) cx bó tay
a)
\(A=-1+5x^6-6x^2-5+9x^6+4x^2-3x^2\)
\(=-6+14x^6-5x^2\)
→ Sắp xếp: \(A=14x^6-5x^2-6\)
\(B=-6-5x^2+3x^4-5x^2+3x+x^4+14x^6-5x\)
\(=-6-10x^2+4x^4-2x+14x^6\)
→ Sắp xếp: \(B=14x^6+4x^4-10x^2-2x-6\)
b) \(A\left(x\right)+B\left(x\right)=14x^6-5x^2-6+14x^6+4x^4-10x^2-2x-6\)
\(=28x^6-15x^2+4x^4-2x-12\)
\(A\left(x\right)-B\left(x\right)=\left(14x^6-5x^2-6\right)-\left(14x^6+4x^4-10x^2-2x-6\right)\)
\(=14x^6-5x^2-6-14x^6-4x^4+10x^2+2x+6\)
\(=5x^2-4x^4+2x\)
- \(x^4\ge0\) với mọi x
- \(-6x^3\ge0\) với mọi x
- \(9x^2\ge0\) với mọi x
\(\Rightarrow x^4-6x^3+9x^2\ge0\) với mọi x
\(\Rightarrow x^4-6x^3+9x^2+2\ge2\)
=> Đa thức trên vô nghiệm.
Chúc bạn học tốt
a/ M(x)+N(x)=(3x3+3x3)+(x2+2x2)-(3x+x)+(5+9)
=6x3+3x2-4x+14
b/ Ta có: M(x)+N(x)-P(x)=6x3+3x2+2x
=> P(x)=M(x)+N(x)-6x3+3x2+2x=-6x
c/ P(x)=-6x=0
=> x=0 là nghiệm đa thức P(x)
d/ Ta có: x2+4x+5
=x.x+2x+2x+2.2+1
=x(x+2)+2(x+2)+1
=(x+2)(x+2)+1
=(x+2)2+1
Mà (x+2)2\(\ne0\)=> Đa thức trên \(\ge1\)
=> Đa thức trên vô nghiệm.
1) Ta có: 2x2 + 2x + 1 = 0
<=> x2 + (x2 + 2x + 1) = 0
<=> x2 + (x+ 1)2 = 0 <=> x = x+ 1 = 0 (Vì x2 \(\ge\) 0 và (x+ 1)2 \(\ge\) 0 với mọi x)
x = x+ 1 => 0 = 1 Vô lý
Vậy đa thức đã cho ko có nghiệm
2) a) x3-2x2-5x+6 = 0
=> x3 - x2 - x2 + x - 6x + 6 = 0
=> ( x3 - x2) - (x2 - x) - (6x - 6) = 0 => x2.(x- 1) - x(x - 1) - 6(x - 1) = 0
=> (x - 1).(x2 - x - 6) = 0 => (x -1).(x2 - 3x + 2x - 6) = 0
=> (x- 1).[x(x - 3) + 2.(x - 3)] = 0 => (x - 1).(x + 2).(x - 3) = 0
=> x- 1= 0 hoặc x + 2 = 0 hoặc x - 3 = 0
=> x = 1 hoặc x = -2 hoặc x = 3
Đa thức đã cho có 3 nghiệm là: 1; -2 ; 3
b) x3 + 3x2 - 6x - 8 = 0
=> x3 + x2 + 2x2 + 2x - 8x - 8 = 0
=> x2.(x + 1) + 2x.(x + 1) - 8 (x + 1) = 0
=> (x+ 1). [x2 + 2x - 8] = 0
=> (x+1).[x2 + 4x - 2x - 8] = 0 => (x +1).[x.(x+4) - 2.(x+4)] = 0
=> (x +1). (x -2). (x+4) = 0
=> x+ 1 hoặc x - 2 = 0 hoặc x+ 4 = 0
=> x = -1 hoặc x = 2 hoặc x = -4
Đa thức đã cho có 3 nghiệm là -1; 2; -4
a)A(x)=3x5-12x3-6x2+11x+9
B(x)=-3x5+12x3+7x2-9x-7
b)A(x)+B(x)=
3x5-12x3-6x2+11x+9
+
-3x5+12x3+7x2-9x-7
= x2+2x+2
Vậy C(x)=x2+2x+2
A(x)-B(x)=
3x5-12x3-6x2+11x+9
-
-3x5+12x3+7x2-9x-7
= 6x5-24x3-13x2+20x+16
Vậy D(x)=6x5-24x3-13x2+20x+16
c)C(x)=x2+2x+2=x2+2x+1+1=(x+1)2+1
Do (x+1)2\(\ge0\forall x\in R\)
=>C(x)=(x+1)2+1\(\ge1\forall x\in R\)
:))
Ta có:
h(x)= -2x2 - 3x3 - 5x + 5x3 - x + x2 + 4x + 3 + 4x2-( 2x2 - x3 + 3x + 3x3 + x2 - x - 9x + 2)
=> h(x)=-2x2 - 3x3 - 5x + 5x3 - x + x2 + 4x + 3 + 4x2-2x2 + x3 - 3x - 3x3 - x2 + x + 9x - 2)
=> h(x)=x2+5x-2
b,
Cho x2+5x-2=0
=> ... tự giải :))
a,f(x)=2x^3+3x^2-2x+3
g(x)=2x^3+3x^2-7x+2
h(x)=f(x)-g(x)=(2x^3+3x^2-2x+3)-(2x^3+3x^2-7x+2)
=2x^3+3x^2-2x+3-2x^3-3x^2+7x-2
=(2x^3-2x^3)+(3x^2-3x^2)+(-2x+7x)+(3-2)
=5x+1
b,Đặt_h(x)=5x+1=0
5x=0-1
5x=-1
x=-1/5
Vậy_nghiệm_của_đa_thức_h(x)_là_-1/5
dễ mà ??? sách đó bạn
a) Ta có: \(\Delta=\left(-9\right)^2-4.3.20=81-240=-159< 0\)
\(\Delta< 0\Leftrightarrow pt\) vô nghiệm
b) \(\Delta'=\left(-3\right)^2-17.1=9-17=-8< 0\)
\(\Delta'< 0\Leftrightarrow pt\) vô nghiệm