Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Hpt có nghiệm duy nhất khi \(m\ne3;m\ne4\)
Hpt có vô số nghiệm khi \(\hept{\begin{cases}m=3\\m=4\end{cases}}\)(vô lí). Vậy hệ không thể có vô số nghiệm
b) \(\hept{\begin{cases}3x+my=4\\x+y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}3\left(1-y\right)+my=4\\x=1-y\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(m-3\right)y=1\\x=1-y\end{cases}}\)
\(\cdot m=3\Rightarrow\hept{\begin{cases}0=1\\x=1-y\end{cases}}\)(vô lí)
\(\cdot m>3\Rightarrow\hept{\begin{cases}y=\frac{1}{m-3}>0\\x=1-\frac{1}{m-3}=\frac{m-4}{m-3}\end{cases}}\)
Để \(x< 0\)thì \(\frac{m-4}{m-3}< 0\). Mà \(m-3>0\Leftrightarrow m>3\)nên \(m-4< 0\Leftrightarrow m< 4\)
\(\Rightarrow3< m< 4\)
\(\cdot m< 3\Rightarrow\hept{\begin{cases}y=\frac{1}{m-3}< 0\\x=1-\frac{1}{m-3}=\frac{m-4}{m-3}\end{cases}}\)(loại do \(y< 0\))
Vậy \(3< m< 4\)thì thỏa ycbt
\(\Leftrightarrow\hept{\begin{cases}x^2+1=4y-y^2-xy\left(1\right)\\\left(x^2+1\right)\left(x+y-2\right)=y\left(2\right)\end{cases}}\)
Thế (1) vào (2), ta có:
\(\left(4y-y^2-xy\right)\left(x+y-2\right)=y\)
\(\Leftrightarrow y\left(4-y-x\right)\left(x+y-2\right)=y\)
+) Với \(y=0\Rightarrow x^2+1=0\)(vô lí)
+) \(y\ne0\Rightarrow\left(4-y-x\right)\left(x+y-2\right)=1\)
\(\Leftrightarrow\left(y+x-3\right)^2=0\)
\(\Leftrightarrow x=3-y\)
Đến đây tự làm tiếp
Rút y ở phương trình thứ nhất, rồi thay vào phương trình thứ hai để tìm x.
Từ phương trình thứ nhất ta có:
\(y=13+4x\)(*)
Thay y vào phương trình thứ hai ta có:
\(-4+2\left(13+4x\right)=22\)
Từ đó tự tính: Nếu mày đã học nghiệm rồi
\(x=-1\)
Thay x vào (*) ta tìm y:
\(y=13+4.\left(-1\right)\)
Vậy hiệu nghiệm của hệ phương trình này là:
\(\hept{\begin{cases}x=-1\\y=9\end{cases}}\)
Ta có :
\(\hept{\begin{cases}4x-y=13\\-4x+2y=22\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4x=13+y\\-\left(13+y\right)+2y=22\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4x=13+y\\-13-y+2y=22\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4x=13+y\\-13+y=22\end{cases}}\Leftrightarrow\hept{\begin{cases}4x=13+y\\y=35\end{cases}\Leftrightarrow\hept{\begin{cases}4x=13+35\\y=35\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}4x=48\\y=35\end{cases}\Leftrightarrow\hept{\begin{cases}x=12\\y=35\end{cases}}}\)
câu a)
nhân cả 3 phương trình
ta được
\(x^2y^2z^2=6\left(x+y-z\right)\left(x-y+z\right)\left(y-x+z\right)\)
Vế trái là 1 số chính phương nên Vp cũng là số chính phương
6 không phải là số chính phương nên
\(\left(x+y-z\right)\left(x-y+z\right)\left(y-x+z\right)\)=6
lập bảng
đặt x+y-z=1 ; x-y+z=2; y-x+z=3 giải ra và tương tự xét các cái còn lại (hơi lâu) nhớ xét thêm cái âm nữa
câu b)
từ hpt =>5y+3=11z+7
<=>\(y=\frac{11z+4}{5}\)>0 với mọi y;z thuộc R
y nguyên dương nên (11z+4)thuộc bội(5) và z_min
=> z=1
=> y=3
=> x =18 (t/m)
câu c)
qua pt (1) =>x=20-2y-3z
thay vao 2) <=> y+5z=23
y;z là nguyên dương mà 5z chia hêt cho 5
=> z={1;2;3;4}
=> y={18;13;8;3}
=> x={-19;-12;-5;2} đoạn này bạn làm từng GT của z nhé
chọn x=2; y=3; z=4 (t/m)
Nếu có sai sót hãy báo lại qua gmail: tiendung230103@gmail.com
a) \(\hept{\begin{cases}x+y=2\\3x+3y=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x+3y=6\\3x+3y=2\end{cases}}\)
Dễ thấy điều trên là vô lí nên hệ phương trình không có nghiệm
cho mk hỏi ai chs lazi điểm danh cái đê ~ mk hỏi thật đấy k đùa nha ~ bình luận thì mk k cho 3 cái ~
Nghiệm là:
\(\hept{\begin{cases}x=6\\y=2\end{cases}}\)thảo mãn
P/s: Mk ko chắc đâu nhé
Rút x ở phương trình thứ hai, rồi thay vào phương trình thứ nhất để tìm y.
Từ phương trình thứ hai ta có:
\(x=-3+4y\) ( * )
Thay x vào phương trình thứ nhất ta có:
\(4\left(-3+4y\right)-5y=-12\)
Giải ra ta được
\(y=0\)
Thay y vào (*) ta tìm x:
\(x=-3+4.0\)
\(x=-3\)
Vậy nghiệm của hệ phương trình là:
\(\hept{\begin{cases}x=-3\\y=0\end{cases}}\)