Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(3x^2+5x-3\right)+\left(x-3x^2-3\right)=0\)
\(\Leftrightarrow6x-6=0\)
\(\Leftrightarrow6x=6\Leftrightarrow x=1\)
b) \(\left(3x^2-5x\right)-\left(3x^2+x-12\right)=0\)
\(\Leftrightarrow3x^2-5x-3x^2-x+12=0\)
\(\Leftrightarrow-6x=-12\Leftrightarrow x=2\)
a: \(C\left(x\right)=A\left(x\right)+B\left(x\right)\)
\(=3x^4-4x^3+5x^2-4x-3-3x^4+4x^3-5x^2+2x+6\)
=-2x+3
b: Đặt C(x)=0
=>-2x+3=0
hay x=3/2
Ta có \(A\left(x\right)=\dfrac{1}{3}x+1=0\Leftrightarrow x=-1:\dfrac{1}{3}=-3\)
\(B\left(x\right)=-\dfrac{3}{4}x+\dfrac{1}{3}\Leftrightarrow x=-\dfrac{1}{3}\left(-\dfrac{3}{4}\right)=4\)
\(C=\left(2x-4\right)\left(x+1\right)=0\Leftrightarrow x=2;x=-1\)
\(D\left(x\right)-4x\left(x-2\right)=0\Leftrightarrow x=0;x=2\)
`a)` Cho `3x+6=0`
`=>3x=-6`
=>x=-2`
Vậy nghiệm của đa thức là `x=-2`
`b)` Cho `2x^2-3x=0`
`=>x(2x-3)=0`
`@TH1:x=0`
`@TH2:2x-3=0=>2x=3=>x=3/2`
Vậy nghiệm của đa thức là `x=0` hoặc `x=3/2`
____________________________________________
Câu `2:`
Vì `(x+1)^2 >= 0 AA x`
`=>2(x+1)^2 >= 0 AA x`
`=>2(x+1)^2-5 >= -5 AA x`
Hay `A >= -5 AA x`
Dấu "`=`" xảy ra khi `(x+1)^2=0=>x+1=0=>x=-1`
Vậy `GTN N` của `A` là `-5` khi `x=-1`
Câu 1:
a, Cho 2x+6=0
2x = 0-6=-6
x = -6 :2=-3
Vậy đa thức trên có nghiệm là x=-3
b, Cho đa thức 2x2-3x=0
2xx-3x=0
x(2x-3x)=0
1,x=0
2,2x-3x=0
x(2-3)=0
-x =0
=>x=0
Vậy đa thức tên có nghiệm là x=0
Câu 2:
Để đa thức A có giá trị nhỏ nhất thì 2(x+1)2-5 phải bé nhất;
mà 2(x-1)2≥0
Dấu bằng chỉ xuất hiện khi và chỉ khi :
2(x-1)2=0
(x-1)2=0:2=0=02
=>x-1=0
x =0+1=1
=> A = 2(1-1)2-5
A =2.0-5
A 0-5 =-5
Vậy A có giá trị bé nhất là -5 với x= 1
a) choA(x) = 0
\(=>-18+2x=0\)
\(=>2x=18=>x=9\)
b) cho B(x) = 0
\(=>\left(x+1\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
a) Đặt \(x^2-x=0=x\left(x-1\right)=0\)
=> \(\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Vậy nghiệm của đa thức trên là 0 hoặc 1
b) Đặt \(x^2-2x=0=>x\left(x-2\right)=0=>\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy...
a) \(-3x^3+5x^2-2x=0\\ \Leftrightarrow3x^3-5x^2+2x=0\\ \Leftrightarrow x\left(3x^2-5x+2\right)=0\\ \Leftrightarrow x\left(3x-2\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\\x=1\end{matrix}\right.\)
Vậy tập nghiệm của phương trình là \(S=\left\{0;\dfrac{2}{3};1\right\}\)
b) \(\dfrac{-1}{2}x^4+\dfrac{1}{8}x^2=0\\ \Leftrightarrow\dfrac{-1}{2}x^2\left(x^2-\dfrac{1}{4}\right)=0\\ \Leftrightarrow\dfrac{-1}{2}x^2\left(x-\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
Vậy tập nghiệm của phương trình là \(S=\left\{0;\dfrac{1}{2};\dfrac{-1}{2}\right\}\)
`f(x)=0 <=> (x-2)(x-16)-x(2-x)=0`
`(x-2)(x-16)+x(x-2)=0`
`(x-2)(x-16+x)=0`
`(x-2)(2x-16)=0`
`[(x-2=0),(2x-16=0):}`
`[(x=2),(x=8):}`.
a)Ta có:\(x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Vậy nghiệm PT là 0 và 2
b) Ta có: \(x^2-9=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x+3=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
Vậy nghiệm PT là 3 và -3
Ta có : x2 - 2x = 0
<=> x(x - 2) = 0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)