Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét g(x)=0
Suy ra (6-3x)(-2x+5)=0
Suy ra:\(\orbr{\begin{cases}6-3x=0\\-2x+5=0\end{cases}}\Rightarrow\orbr{\begin{cases}3x=6\\-2x=-5\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{5}{2}\end{cases}}\)
Vậy, nghiệm của đa thức g(x) là 2 và 5/2
\(x^2-3x-4=0\)
\(< =>x^2+x-4x-4=0\)
\(< =>x\left(x+1\right)-4\left(x+1\right)=0\)
\(< =>\left(x-4\right)\left(x+1\right)=0\)
\(< =>\orbr{\begin{cases}x=4\\x=-1\end{cases}}\)
\(2x^3-x^2-2x+1=0\)
\(< =>x^2\left(2x-1\right)-\left(2x-1\right)=0\)
\(< =>\left(x^2-1\right)\left(2x-1\right)=0\)
\(< =>\left(x-1\right)\left(x+1\right)\left(2x+1\right)=0\)
\(< =>\hept{\begin{cases}x=1\\x=-1\\x=-\frac{1}{2}\end{cases}}\)
2x^2-3x-5=(x+1)(2x-5) => 2x^2-3x-5 co 2 nghiem x=-1 va x=5/2
x^3+4x^2+x-6=(x-1)(x+2)(x+3) =>x^3+4x^2+x-6 co 3 nghiemx=1;x=-2 va x=-3
36x^4+12x^3-17x^2-3x+2=(2x-1)^2(3x-1)(3x+2) => 36x^4+12x^3-17x^2-3x+2 co 3 nghiem x=1/2;x=1/3 va x=-2/3
a,\(2x^2-3x-5\)
=\(2\left(x^2-2x.\frac{3}{4}+\frac{9}{16}\right)-\frac{49}{8}\)
=\(2\left(x-\frac{3}{4}\right)^2-\frac{49}{8}\)
Để g(x) có nghiệm
=>\(2\left(x-\frac{3}{4}\right)^2-\frac{49}{8}\)=0
=>\(2\left(x-\frac{3}{4}\right)^2=\frac{49}{8}\)
=>\(\left(x-\frac{3}{4}\right)^2=\frac{49}{16}\)
=>x=-1 hoặc x=5/2
Vậy x=-1 hoặc x=5/2
a,G(x)=2x-6
<=>2x-6=0
<=>2x=6
<=>x=3
Vậy nghiệm của G(x) là 3
b,hệ số là 0
a,2x-6=0
<=>x=3
b,\(a^2-3.\left(-2\right)+18=0\Leftrightarrow a^2=-24\)(Vô nghiệm)
H(x)=2x^2+5x
nghiệm của H(x) là :
H(x)=0 khi x=0
vì \(2.0^2+5.0=0\)
vậy nghiệm của H(x) là 0
đúng chưa bạn nếu đúng thì kết bạn với mình nhé
ta gọi nghiệm của đa thức là a, ta có
(6-3a)(-2x+5)=0
vì đay là phép nhân nên
=> (6-3a) phải bằng 0 hoặc (-2x+5) bằng 0
ta chia làm hai trường hợp
trường hợp 1
6-3a=0
=> 3a=6
=> a=6:3=2
trường hợp 2
-2x+5=0
=>-2x=-5
=.x=-5/-2=5/2=2,5
vậy đa thức g(x) có hai nghiệm là 2 và 2,5