Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)x2-4=0
x2=4
x=2 và -2
Vậy: Nghiệm pt trên x={2;-2}
b) x2+9=0
x2=-9
=> PT vô nghiệm \(\left(x^2\ge0\right)\)
c) \(\left(x-3\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\2x+7=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-\frac{7}{2}\end{cases}}}\)
Vậy:.........
d) Đề ko rõ lắm
#H
\(a,x^2-2=0\Leftrightarrow x^2-\left(\sqrt{2}\right)^2=0\Leftrightarrow\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)
Vậy \(S=\left\{-\sqrt{2};\sqrt{2}\right\}\)
\(b,x\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy \(S=\left\{0;2\right\}\)
\(c,x^2-2x=0\Leftrightarrow x\left(x-2\right)\) phương trình như câu b,
\(d,x\left(x^2+1\right)\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=-1\left(voli\right)\end{matrix}\right.\)( voli là vô lí )
Vậy \(S=\left\{0\right\}\)
B(x) = x2+x
Đặt B(x) = 0
=> x2+x=0
x.x + x = 0
x(x+1)=0
TH1: x = 0
TH2: x+1 = 0
x = -1
Vậy nghiệm của B(x) là x=-1
Cho A(x) = 0, có:
x2 - 4x = 0
=> x (x - 4) = 0
=> x = 0 hay x - 4 = 0
=> x = 0 hay x = 4
Vậy: x = 0; x = 4 là nghiệm của đa thức A(x)
Ta có: x2 – x = 0 ⇔ x(x – 1) = 0 ⇔ x = 0 hoặc x – 1 = 0
⇔ x = 0 hoặc x = 1
Vậy x = 0 và x = 1 là các nghiệm của đa thức x2 – x
`a,`
`P(x)=5x^3-3x+7-x`
`= 5x^3+(-3x-x)+7`
`= 5x^3-4x+7`
Bậc của đa thức: `3`
`Q(x)=-5x^3+2x-3+2x-x^2-2`
`= -5x^3+(2x+2x)-x^2+(-3-2)`
`= -5x^3-x^2+4x-5`
Bậc của đa thức: `3`
`b,`
`P(x)=M(x)-Q(x)`
`-> M(x)=Q(x)+P(x)`
`M(x)=( 5x^3-4x+7)+(-5x^3-x^2+4x-5)`
`= 5x^3-4x+7-5x^3-x^2+4x-5`
`= (5x^3-5x^3)-x^2+(-4x+4x)+(7-5)`
`= -x^2+2`
Vậy, `M(x)=-x^2+2`
`c,`
`-x^2+2=0`
`=> -x^2=0-2`
`=> -x^2=-2`
`=> x^2=2`
`=> x= \sqrt {+-2}`
Vậy, nghiệm của đa thức là `x={ \sqrt{2}; -\sqrt {2} }.`
a: P(x)=5x^3-4x+7
Q(x)=-5x^3-x^2+4x-5
b: M(x)=P(x)-Q(x)
=5x^3-4x+7+5x^3+x^2-4x+5
=10x^3+x^2-8x+12
Ta có: (x – 1)(x2 + 1) = 0
Vì x2 ≥ 0 với mọi giá trị của x ∈ R nên:
x2 + 1 > 0 với mọi x ∈ R
Suy ra: (x – 1)(x2 + 1) = 0 ⇔ x – 1 = 0 ⇔ x = 1
Vậy x = 1 là nghiệm của đa thức (x – 1)(x2 + 1)
\(C\left(x\right)=x^2+x+3\)
Thay \(x=0\)vào đa thức \(C\left(x\right)=x^2+x+3\)
\(C\left(0\right)=0^2+0+3=3\)
vậy nghiệm của đa thức trên là \(3\)
hk tốt
\(C\left(x\right)=x^2+x+3=0\)
\(\Leftrightarrow x^2+x=0-3\)
\(\Leftrightarrow x^2+x=-3\)(1)
\(\Leftrightarrow x\left(x+1\right)=-3\)
Mà \(x^2\ge x\Rightarrow x^2+x\ge0\)[ trái với (1) ]
Vậy đa thức C(x) vô nghiệm