Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(-1)=(-1)2-4(-1)-5
=1+4-5
=0
f(5)=52-4x5-5
=25-20-5
=0
vậy x=-1 và x=5 là nghiệm của đa thức
E + F = (5xy - \(\dfrac{2}{3}\)x\(^2\)y + xyz\(^2\) - 1) + (2x\(^2\)y - xyz\(^2\) - \(\dfrac{2}{5}\)xy + x + \(\dfrac{1}{2}\))
= 5xy - \(\dfrac{2}{3}\)x\(^2\)y + xyz\(^2\) - 1 + 2x\(^2\)y -xyz\(^2\) - \(\dfrac{2}{5}\)xy + x + \(\dfrac{1}{2}\)
= (5xy - \(\dfrac{2}{5}\)xy) + (\(\dfrac{-2}{3}\)x\(^2\)y + 2x\(^2\)y) + (xyz\(^2\) - xyz\(^2\)) + (-1 + \(\dfrac{1}{2}\)) + x
= \(\dfrac{23}{5}\)xy + \(\dfrac{4}{3}\) x\(^2\)y - \(\dfrac{1}{2}\) + x
E - F = (5xy - \(\dfrac{2}{3}\)x\(^2\)y + xyz\(^2\) - 1) - (2x\(^2\)y - xyz\(^2\) - \(\dfrac{2}{5}\)xy + x + \(\dfrac{1}{2}\))
= 5xy - \(\dfrac{2}{3}\)x\(^2\)y + xyz\(^2\) - 1 - 2x\(^2\)y + xyz\(^2\) + \(\dfrac{2}{5}\)xy - x - \(\dfrac{1}{2}\)
= (5xy + \(\dfrac{2}{5}\)xy) + (\(\dfrac{-2}{3}\)x\(^2\)y - 2x\(^2\)y) + (xyz\(^2\) + xyz\(^2\))+ (-1 - \(\dfrac{1}{2}\)) - x
= \(\dfrac{27}{5}\)xy - \(\dfrac{8}{3}\)x\(^2\)y + 2xyz\(^2\) - \(\dfrac{3}{2}\) - x
Vậy E - F = \(\dfrac{27}{5}\)xy - \(\dfrac{8}{3}\)x\(^2\)y + 2xyz\(^2\) - \(\dfrac{3}{2}\) - x
Đặt \(f\left(x\right)=2.\left(2-x\right)+\left(x-2\right)^2\)
Ta có: \(f\left(x\right)=0\Leftrightarrow2.\left(2-x\right)+\left(x-2\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}2.\left(2-x\right)=0\\\left(x-2\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\x=2\end{cases}}\)
Vậy x=2 là nghiệm của đa thức trên
Xét : \(A\left(x\right)=0\)
\(\Rightarrow2x-3=0\)
\(\Rightarrow2x=0+3\)
\(\Rightarrow2x=3\)
\(\Rightarrow x=\frac{3}{2}\)
Vậy \(x=\frac{3}{2}\)là nghiệm của đa thức \(A\left(x\right)\)
Xét \(B\left(x\right)=0\)
\(\Rightarrow3x^2-6x=0\)
\(\Rightarrow3x\left(x-2\right)=0\)
\(\Rightarrow x\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)là nghiệm của đa thức \(B\left(x\right)\)
Chúc bạn thi tốt !!!
(*)ta có A(x)=0
<=> 2x-3=0
<=> 2x=3
<=>x=2/3
Vậy nghiệm của đa thức A(x) là 2/3
(*) ta có B(x)=0
<=>\(3x^2-6x=0\)
\(3x.x-3x.2=0\)
\(3x\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
a) \(f\left(x\right)=-x^4+3x^3-\frac{1}{3}x^2+2x+5\)
\(g\left(x\right)=x^4+3x^3-\frac{2}{3}x^2-2x-10\)
b) \(f\left(x\right)+g\left(x\right)=-x^4+3x^3-\frac{1}{3}x^2+2x+5+x^4+3x^3-\frac{2}{3}x^2-2x-10\)
\(=6x^3-x^2-5\)
c) +) Thay x=1 vào đa thức f(x) + g(x) ta được :
\(6.1^3-1^2-5=0\)
Vậy x=1 là nghiệm của đa thức f(x) + g(x)
+) Thay x=-1 vào đa thức f(x) + g(x) ta được :
\(6.\left(-1\right)^3-\left(-1\right)^2-5=-10\)
Vậy x=-1 ko là nghiệm của đa thức f(x) + g(x)
\(2\left(2-x\right)\cdot2\cdot\left(2-x\right)\cdot1212\cdot\left(x-2\right)\cdot2\cdot\left(x-2\right)\cdot2=0\)
\(4\left(2-x\right)^2\cdot4848\left(x-2\right)^2=0\)
\(19392\left(2-x\right)^2\left(x-2\right)^2=0\)
\(\left(2-x\right)^2\left(x-2\right)^2=0\)
\(TH1:\left(2-x\right)^2=0\Rightarrow2-x=0\Rightarrow x=2\)
\(TH2:\left(x-2\right)^2=0\Rightarrow x-2=0\Rightarrow x=2\)
Vậy x = 2
<br class="Apple-interchange-newline"><div id="inner-editor"></div>2(2−x)·2·(2−x)·1212·(x−2)·2·(x−2)·2=0
4(2−x)2·4848(x−2)2=0
19392(2−x)2(x−2)2=0
(2−x)2(x−2)2=0
TH1:(2−x)2=0⇒2−x=0⇒x=2
TH2:(x−2)2=0⇒x−2=0⇒x=2
x = 2
a) Các đơn thức đồng dạng là:
\(2x^2y^3\) và \(\dfrac{-1}{2}x^2y^3\); \(5y^2x^3\) và \(\dfrac{-1}{2}x^2y^3\)
b) Ta có:
\(F=2x^2y^3+5y^2x^3+\dfrac{-1}{2}x^3y^2+\dfrac{-1}{2}x^2y^3\)
\(=\left(2x^2y^3+\dfrac{-1}{2}x^2y^3\right)+\left(5y^2x^3+\dfrac{-1}{2}x^3y^2\right)\)
\(=\dfrac{3}{2}x^2y^3+\dfrac{9}{2}x^3y^2\)
c) Tại \(x=-3;y=2\) thì:
\(F=\dfrac{3}{2}\left(-3\right)^2.2^3+\dfrac{9}{2}.\left(-3\right)^3.2^2\)
\(=108-486=-378.\)
a) Các đơn thức đồng dạng là:
- 2x\(^2\)y\(^3\) và \(\dfrac{-1}{2}\)x\(^2\)y\(^3\)
- 5y\(^2\)x\(^3\) và \(\dfrac{-1}{2}\)x\(^3\)y\(^2\)
b) F = 2x\(^2\)y\(^3\) + 5y\(^2\)x\(^3\) + (\(\dfrac{-1}{2}\))x\(^3\)y\(^2\) + (\(\dfrac{-1}{2}\))x\(^2\)y\(^3\)
= [ 2x\(^2\)y\(^3\) + (\(\dfrac{-1}{2}\))x\(^2\)y\(^3\) ] + [ 5y\(^2\)x\(^3\) + (\(\dfrac{-1}{2}\))x\(^3\)y\(^2\) ]
= \(\dfrac{3}{2}\)x\(^2\)y\(^3\) + \(\dfrac{9}{2}\)y\(^2\)x\(^3\)
Vậy đa thức F có giá trị là: \(\dfrac{3}{2}\)x\(^2\)y\(^3\) + \(\dfrac{9}{2}\)y\(^2\)x\(^3\)
c) Thay x = -3 và y = 2 vào đa thức F đã cho, ta có:
\(\dfrac{3}{2}\) . (-3)\(^2\) . 2\(^3\) + \(\dfrac{9}{2}\) . 2\(^2\) . (-3)\(^3\) = 108 + (-486) = 108 - 486 = -378
Vậy tại x = -3 và y = 2, giá trị của đa thức F là: -378
f(x) = x\(^2\)+ x +1 = x\(^2\)+ \(\dfrac{1}{2}\)x + \(\dfrac{1}{2}\)x + \(\dfrac{1}{4}\)+\(\dfrac{3}{4}\)
= x (x+\(\dfrac{1}{2}\)) + \(\dfrac{1}{2}\)(x+\(\dfrac{1}{2}\)) +\(\dfrac{3}{4}\)
= (x+\(\dfrac{1}{2}\)) + (x+\(\dfrac{1}{2}\))+\(\dfrac{3}{4}\)
= (x+\(\dfrac{1}{2}\))\(^2\)+\(\dfrac{3}{4}\)
Vì (x+\(\dfrac{1}{2}\))\(^2\)\(\ge\)0
=> (x+\(\dfrac{1}{2}\))\(^2\)+\(\dfrac{3}{4}\) > 0
=> f(x) ko có nghiệm.
Thấy đúng thì tick cho mk nha, thanks trc
Chúc bn hk tốt!!!
bạn viêt rõ đa thức được ko , mình ko hiểu