Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Rút gọn P(x), ta được: P(x) = \(x^2-4\)
Có: P(x) = \(x^2-4=0\)
\(\Rightarrow x^2=4\)
\(\Rightarrow x\in\left\{-2;2\right\}\)
Vậy x = -2 hoặc x = 2 là nghiệm của đa thức P(x)
xét P(x) có nghiệm <=>P(x)=0
<=>4x2 - 2x - 3x2 - 5 + 2x + 1=0
<=>x2-4=0
<=>(x-2)(x+2)=0
<=>x-2=0 hoặc x+2=0
<=>x=2 hoặc -2
\(f\left(x\right)=2x^3+4x^2-2x=0\)
\(\Rightarrow2x\left(x^2+2x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2+2x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\\left(x+1\right)^2=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\sqrt{2}-1\end{cases}}\)
P/S:không chắc chắn đâu nha.đặc biệt là cái nghiệm thứ 2 ý.
zZz Cool Kid zZz:Thiếu nghiệm rồi bạn ey!Mình giải lại chỗ pt thứ 2 thôi nhé!
\(x^2+2x-1=0\Leftrightarrow x^2+2x+1=2\)
\(\Leftrightarrow\left(x+1\right)^2=2\Leftrightarrow\orbr{\begin{cases}x+1=\sqrt{2}\\x+1=-\sqrt{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}-1\\x=-\sqrt{2}-1\end{cases}}\)
Hoặc nếu đã học hằng đẳng thức:
\(x^2+2x-1=0\Leftrightarrow\left(x^2+2x+1\right)-2=0\)
\(\Leftrightarrow\left(x+1\right)^2-\sqrt{2}^2=0\Leftrightarrow\left(x+1-\sqrt{2}\right)\left(x+1+\sqrt{2}\right)=0\)
Từ đây suy ra nghiệm (theo mình là thế)
a) H(x) = 2x2 - 4x
= 2x(x - 2)
Cho 2x(x-2) = 0
=>\(\orbr{\begin{cases}2x=0\\x-2=0\end{cases}}\)=>\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Vậy x = 0; x = 2 là các nghiệm của đa thức H(x)
b) R(x) = x2 + 10x + 36
= x2 + 5x + 5x + 25 + 11
= (x2 + 5x) + (5x + 25) +11
= x(x + 5) + 5(x + 5) + 11
= (x + 5)(x + 5) + 11
= (x + 5)2 +11
Vì (x + 5)2 ≥ 0\(\forall x\in R\)
nên (x + 5)2 + 11 > 0\(\forall x\in R\)
Vậy không có nghiệm nào của đa thức R(x)
a) H(x) = 2x2 - 4x
= 2x(x - 2)
Cho 2x(x-2) = 0
=>[
2x=0 |
x−2=0 |
=>[
x=0 |
x=2 |
Vậy x = 0; x = 2 là các nghiệm của đa thức H(x)
b) R(x) = x2 + 10x + 36
= x2 + 5x + 5x + 25 + 11
= (x2 + 5x) + (5x + 25) +11
= x(x + 5) + 5(x + 5) + 11
= (x + 5)(x + 5) + 11
= (x + 5)2 +11
Vì (x + 5)2 ≥ 0∀x∈R
nên (x + 5)2 + 11 > 0∀x∈R
Vậy không có nghiệm nào của đa thức R(x)
a)Ta có:\(2x^3+x^2-4x-2=0\)
\(\Leftrightarrow x^2\left(2x+1\right)-2\left(2x+1\right)=0\)
\(\Leftrightarrow\left(x^2-2\right)\left(2x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-2=0\\2x+1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x^2=2\\x=-\frac{1}{2}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\sqrt{2};-\sqrt{2}\\x=-\frac{1}{2}\end{cases}}\)
b)Ta có:\(3x^2+2x-5=0\)
\(\Leftrightarrow3x^2-3x+5x-5=0\)
\(\Leftrightarrow3x\left(x-1\right)+5\left(x-1\right)=0\)
\(\Leftrightarrow\left(3x+5\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x+5=0\\x-1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{5}{3}\\x=1\end{cases}}\)
1/ a/ Ta có:
\(P\left(2\right)=m.2^2+\left(2m+1\right).2-10=16\)
\(\Leftrightarrow m-3=0\)
\(\Leftrightarrow m=3\)
b/ Theo câu a thì
\(P\left(x\right)=3x^2+7x-10=0\)
\(\Leftrightarrow\left(3x^2-3x\right)+\left(10x-10\right)=0\)
\(\Leftrightarrow3x\left(x-1\right)+10\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x+10\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{10}{3}\end{cases}}\)
2/ Tương tự a phân tích nhân tử hộ thôi nha
a/ \(1-5x=0\)
b/ \(x^2\left(x+2\right)=0\)
c/ \(\left(x-1\right)\left(2x-3\right)=0\)
d/ \(\left(x-2\right)^2+4x^{2018}\ge0\) vì dấu = không xảy ra nên đa thức vô nghiệm
f(x)=x^3+x^2+3x^2+3x-5x-5
f(x)=(x+1)(x^2+3x+5)
f(x)=(x+1)(x^2+2 nhân x nhân 3/2 +9/4 -9/4 +5)
f(x)=(x+1)((x+3/2)^2+11/4)
Nghiệm của f(x) là x=-1
Ta có: 4x2+4x+2= (2x)2 +2.2x.1 +12 +1
= (2x+1)2+1 >0
Vậy phương trình vô nghiệm.
Chúc bạn học tốt!
4x^2+4x+2
(2x)^2+2.2x.1.1+1^2+1=(2x-1)^2+1^2
=(2x-1-1).(2x-1+1)
=(2x-2).(2x)
dat (2x-2).(2x)=0
=>2x-2=0 hoac 2x=0
th1
2x-2=0
2x=2
x=1
th2
2x=0
x=0
vay =0 hoac 1
\(4x^2-2x-3x^2-5+2x+1=0\)
\(\Rightarrow x^2-4=0\)
\(\Rightarrow x^2=4\)
\(\Rightarrow x=\pm2\)
2x^2 - 4x = 0
2x(x - 4) = 0
• 2x = 0 <=> x = 0
• x - 4 = 0 <=> x = 4
Vậy x = 0 hoặc x = 4 là nghiệm của đa thức
Tại x = 2 ta được 2x2^2 - 4x2 = 4 - 4 = 0
=> x = 2 là nghiệm của 2x^2 - ã