Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-3x-4=0\)
\(< =>x^2+x-4x-4=0\)
\(< =>x\left(x+1\right)-4\left(x+1\right)=0\)
\(< =>\left(x-4\right)\left(x+1\right)=0\)
\(< =>\orbr{\begin{cases}x=4\\x=-1\end{cases}}\)
\(2x^3-x^2-2x+1=0\)
\(< =>x^2\left(2x-1\right)-\left(2x-1\right)=0\)
\(< =>\left(x^2-1\right)\left(2x-1\right)=0\)
\(< =>\left(x-1\right)\left(x+1\right)\left(2x+1\right)=0\)
\(< =>\hept{\begin{cases}x=1\\x=-1\\x=-\frac{1}{2}\end{cases}}\)
phần a bạn Nguyễn xuân khải làm đúng rồi nên mình chỉ làm phần b
b)h(2)=2*2^2-7m*2+4=8-14m+4=0
=>4-14m=0
=>14m=4
=>m=\(\frac{2}{7}\)
Vậy m=\(\frac{2}{7}\)
a, \(P\left(1\right)=2-3-4=-5\)
b, \(H\left(x\right)=P\left(x\right)-Q\left(x\right)=x^2-9\)
c, Ta có \(H\left(x\right)=\left(x-3\right)\left(x+3\right)=0\Leftrightarrow x=3;x=-3\)
1/ a/ Ta có:
\(P\left(2\right)=m.2^2+\left(2m+1\right).2-10=16\)
\(\Leftrightarrow m-3=0\)
\(\Leftrightarrow m=3\)
b/ Theo câu a thì
\(P\left(x\right)=3x^2+7x-10=0\)
\(\Leftrightarrow\left(3x^2-3x\right)+\left(10x-10\right)=0\)
\(\Leftrightarrow3x\left(x-1\right)+10\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x+10\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{10}{3}\end{cases}}\)
2/ Tương tự a phân tích nhân tử hộ thôi nha
a/ \(1-5x=0\)
b/ \(x^2\left(x+2\right)=0\)
c/ \(\left(x-1\right)\left(2x-3\right)=0\)
d/ \(\left(x-2\right)^2+4x^{2018}\ge0\) vì dấu = không xảy ra nên đa thức vô nghiệm
1/
a/ Đặt f (x) = x2 - 3
Khi f (x) = 0
=> \(x^2-3=0\)
=> \(x^2=3\)
=> \(x=\sqrt{3}\)
Vậy \(\sqrt{3}\)là nghiệm của đa thức x2 - 3.
b/ Đặt g (x) = x2 + 2
Khi g (x) = 0
=> \(x^2+2=0\)
=> \(x^2=-2\)
=> \(x\in\varnothing\)
Vậy x2 + 2 vô nghiệm.
c/ Đặt P (x) = x2 + (x2 + 3)
Khi P (x) = 0
=> \(x^2+\left(x^2+3\right)=0\)
=> \(\hept{\begin{cases}x^2=0\\x^2+3=0\end{cases}}\)=> \(\hept{\begin{cases}x=0\\x=\sqrt{3}\end{cases}}\)(loại)
Vậy x2 + (x2 + 3) vô nghiệm.
d/ Đặt \(Q\left(x\right)=2x^2-\left(1+2x^2\right)+1\)
Khi Q (x) = 0
=> \(2x^2-\left(1+2x^2\right)+1=0\)
=> \(2x^2-\left(1+2x^2\right)=-1\)
=> \(2x^2-1-2x^2=-1\)
=> -1 = -1
Vậy đa thức \(2x^2-\left(1+2x^2\right)+1\)có vô số nghiệm.
e/ Đặt \(h\left(x\right)=\left(2x-1\right)^2-16\)
Khi h (x) = 0
=> \(\left(2x-1\right)^2-16=0\)
=> \(\left(2x-1\right)^2=16\)
=> \(2x-1=4\)
=> 2x = 5
=> \(x=\frac{5}{2}\)
Vậy đa thức \(\left(2x-1\right)^2-16\)có nghiệm là \(\frac{5}{2}\).
\(h\left(x\right)=2x^4+x^2-16\)
Đặt t=x2
Ta được\(h\left(x\right)=2t^2+t-16\)
\(\Delta=1^2-4\cdot2\cdot\left(-16\right)=129>0=>\sqrt{\Delta}=\sqrt{129}\)
Vì
\(\Delta>0\)nên đa thức h(x) có 2 nghiệm phân biệt x1,x2\(x_1=\frac{-1+\sqrt{129}}{4}\)
\(x_2=\frac{-1-\sqrt{129}}{4}\)