Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-Mình tưởng các dạng này ở lớp 7 đều ra nghiệm nguyên chứ bạn?
a) -Đặt \(x^2+3x-2=0\)
\(\Rightarrow x^2+2.\dfrac{3}{2}x+\dfrac{9}{4}-\dfrac{17}{4}=0\)
\(\Rightarrow\left(x+\dfrac{3}{2}\right)^2-\dfrac{17}{4}=0\)
\(\Rightarrow\left(x+\dfrac{3}{2}+\dfrac{\sqrt{17}}{2}\right)\left(x+\dfrac{3}{2}-\dfrac{\sqrt{17}}{2}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-3-\sqrt{17}}{2}\\x=\dfrac{-3+\sqrt{17}}{2}\end{matrix}\right.\)
-Vậy nghiệm của đa thức là \(x=\dfrac{-3\pm\sqrt{17}}{2}\)
b) -Đặt \(A=\left|3x+7\right|+\left|2x^2-2\right|=0\)
-Khi \(x\ge1\) thì:
\(A=3x+7+2x^2-2=0\)
\(\Rightarrow2x^2+3x+5=0\)
\(\Rightarrow x^2+\dfrac{3}{2}x+\dfrac{5}{2}=0\)
\(\Rightarrow x^2+2.\dfrac{3}{4}x+\dfrac{9}{16}+\dfrac{31}{16}=0\)
\(\Rightarrow\left(x+\dfrac{3}{4}\right)^2=-\dfrac{31}{16}\) (vô lí).
-Khi \(-1< x< 1\) thì:
\(A=3x+7-2x^2+2=0\)
\(\Rightarrow-2x^2+3x+9=0\)
\(\Rightarrow-2x^2+6x-3x+9=0\)
\(\Rightarrow-2x\left(x-3\right)-3\left(x-3\right)=0\)
\(\Rightarrow\left(x-3\right)\left(-2x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=3\left(loại\right)\\x=\dfrac{-3}{2}\left(loại\right)\end{matrix}\right.\)
-Khi \(\dfrac{-7}{3}\le x\le-1\) , cách làm tương tự như TH khi \(x\ge1\).
-Khi \(x< \dfrac{-7}{3}\) thì:
\(A=-3x-7+2x^2-2=0\)
\(\Rightarrow2x^2-3x-9=0\)
\(\Rightarrow-2x^2+3x+9=0\)
-Đến đây giải như TH khi \(-1< x< 1\).
-Tổng kết lại, vậy đa thức này không có nghiệm.
\(P\left(0\right)=3.0^4+0^3-0^2+\dfrac{1}{4}.0=0+0-0+0=0\)
\(Q\left(0\right)=0^4-4.0^3+0^2-4=0-0+0-4=-4\)
vậy Chứng tỏ x=0 là nghiệm của đa thức P(x), nhưng không phải là nghiệm của đa thức Q(x)
a: \(P\left(-1\right)=3-1+\dfrac{7}{4}=\dfrac{7}{4}+2=\dfrac{15}{4}\)
\(Q\left(\dfrac{1}{2}\right)=-3\cdot\dfrac{1}{4}+2\cdot\dfrac{1}{2}+2=-\dfrac{3}{4}+3=\dfrac{9}{4}\)
b: Đặt P(x)-Q(x)=0
\(\Leftrightarrow3x^2+x+\dfrac{7}{4}=-3x^2+2x+2\)
\(\Leftrightarrow6x^2-x-\dfrac{1}{4}=0\)
\(\Leftrightarrow24x^2-4x-1=0\)
\(\text{Δ}=\left(-4\right)^2-4\cdot24\cdot\left(-1\right)=112>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{4-4\sqrt{7}}{48}=\dfrac{1-\sqrt{7}}{12}\\x_2=\dfrac{1+\sqrt{7}}{12}\end{matrix}\right.\)
\(Q\left(x\right)=-3x^4+4x^3+2x^2+\dfrac{2}{3}-3x-2x^4-4x^3+8x^4+1+3x\)
\(=\left(-3x^4-2x^4+8x^4\right)+\left(4x^3-4x^3\right)+2x^2-\left(3x-3x\right)+\left(1+\dfrac{2}{3}\right)\)
\(=3x^4+2x^2+\dfrac{5}{3}\)
\(3x^4+2x^2+\dfrac{5}{3}=0\)
\(\Rightarrow3x^4+2x^2=-\dfrac{5}{3}\)(Vô lí vì \(3x^4\) và \(2x^2\) luôn lớn hơn hoặc bằng 0)
Vậy Q(x) không có nghiệm
Q(x)=3x^4+2x^2+5/3>=5/3>0 với mọi x
=>Q(x) vô nghiệm
a) A(0) = 3.0^2 - 0 = 0 - 0 = 0
A(1) = 3.1^2 - 1 = 2
b) Nghiệm của đa thức A(x) là: 1/3 và 0
a) P(x) có 1 nghiệm là -1 nên P(-1) = 0
P(-1) = (-2).(-1)2 + m.(-1) - 7m + 3 = 1 - 8m
=> 1 - 8m = 0 <=> m = 1/8
b) Q (x) = 0 <=> 3x2 - 10x + 3 = 0
<=> 3x2 - 9x - x + 3 = 0
<=> (3x2 - 9x) - (x - 3) = 0
<=> 3x(x - 3) - (x - 3) = 0
<=> (x - 3)(3x - 1) = 0
<=> x - 3 = 0 hoặc 3x - 1 = 0
=> x = 3 hoặc x = 1/3
Vậy....
Bài 2:
\(M\left(3\right)=3^2-4\cdot3+3=0\)
=>x=3 là nghiệm của M(x)
\(M\left(-1\right)=\left(-1\right)^2-4\cdot\left(-1\right)+3=1+3+4=8\)
=>x=-1 không là nghiệm của M(x)