Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dạng 1:
a: =>x(x-3)=0
=>x=3 hoặc x=0
b: =>x(3x-4)=0
=>x=4/3 hoặc x=0
c: =>2x-1=0
=>x=1/2
d: =>2x(2x+3)=0
=>x=0 hoặc x=-3/2
e: =>x(2x+5)=0
=>x=-5/2 hoặc x=0
a) \(2x^2-3x=0\)
\(\Leftrightarrow x\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\)
b) \(x^3-2x=0\)
\(\Leftrightarrow x\left(x^2-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{2}\end{matrix}\right.\)
c) \(x^6+1=0\)
\(\Leftrightarrow x^6=-1\)
Ta có : \(x^6\ge0\) với mọi x
Mà : -1 < 0
=> Vô nghiệm
d) \(x^3+2x=0\)
\(\Leftrightarrow x\left(x^2+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=-2\left(loại\right)\end{matrix}\right.\)
e) \(x^5+8x^2=0\)
\(\Leftrightarrow x^2\left(x^3+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x^3+8=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^3=-8\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
f) \(x^2\left(x^2-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x^2-9=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\pm3\end{matrix}\right.\)
g) \(\left(x+\dfrac{1}{2}\right)\left(x^2-\dfrac{4}{5}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=0\\x^2-\dfrac{4}{5}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x^2=\dfrac{4}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=\sqrt{\dfrac{4}{5}}\end{matrix}\right.\)
Bài 1:
Thay x=1 vào đa thức F(x) ta được:
F(1) = 14+2.13-2.12-6.1+5 = 0
=> x=1 là nghiệm của đa thức F(x)
Tương tự ta thế -1; 2; -2 vào đa thức F(x)
Vậy x=1 là nghiệm của đa thức F(x)
a: Đặt A=0
=>-2/3x=5/9
hay x=-5/6
b: Đặt B(x)=0
=>(x-2/5)(x+2/5)=0
=>x=2/5 hoặc x=-2/5
c: Đặt C(X)=0
\(\Leftrightarrow x^3\cdot\dfrac{1}{2}=-\dfrac{4}{27}\)
\(\Leftrightarrow x^3=-\dfrac{8}{27}\)
hay x=-2/3
a: \(\left|x\right|=3+\dfrac{1}{5}=\dfrac{16}{5}\)
mà x<0
nên x=-16/5
b: \(\left|x\right|=-2.1\)
nên \(x\in\varnothing\)
c: \(\left|x-3.5\right|=5\)
=>x-3,5=5 hoặc x-3,5=-5
=>x=8,5 hoặc x=-1,5
d: \(\left|x+\dfrac{3}{4}\right|-\dfrac{1}{2}=0\)
=>|x+3/4|=1/2
=>x+3/4=1/2 hoặc x+3/4=-1/2
=>x=-1/4 hoặc x=-5/4
Bài 1:
a: cho -6x+5=0
⇔ x=\(\dfrac{-5}{-6}\)=\(\dfrac{5}{6}\)
vậy nghiệm của đa thức là:\(\dfrac{5}{6}\)
b: cho x2-2x=0 ⇔ x(x-2)
⇒ x=0 / x-2=0 ⇒ x=0/2
Vậy nghiệm của đa thức là :0 hoặc 2
d : cho x2-4x+3=0 ⇔ x2-x-3x+3=0 ⇔ x(x-1) - 3(x-1)=0 ⇔ (x-3)(x-1)
⇒\(\left[{}\begin{matrix}x-3=0\\x-1=0\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
Vậy nghiệm của đa thức là 1 hoặc 3
f : Cho 3x3+x2=0 ⇔ x2(3x+1)=0
⇒\(\left[{}\begin{matrix}x^2=0\\3x+1=0\end{matrix}\right.\)⇒\(\left[{}\begin{matrix}x=0\\x=\dfrac{-1}{3}\end{matrix}\right.\)
Vậy nghiệm của đa thức là :0 hoặc \(\dfrac{-1}{3}\)
Xin lỗi mình không có thời gian làm hết
a) \(\left|2x-3\right|-\dfrac{5}{2}=\dfrac{1}{3}\)
\(\left|2x-3\right|=\dfrac{1}{3}+\dfrac{5}{2}=\dfrac{2}{6}+\dfrac{15}{6}\)
\(\left|2x-3\right|=\dfrac{17}{6}\)
\(+)2x-3=\dfrac{17}{6}\Rightarrow2x=\dfrac{35}{6}\Rightarrow x=\dfrac{35}{12}\)
\(+)2x-3=\dfrac{-17}{6}\Rightarrow2x=\dfrac{1}{6}\Rightarrow x=\dfrac{1}{12}\)
vậy...
\(\left|x-1\right|+3x=1\\ \Rightarrow\left|x-1\right|=1-3x\\ \Rightarrow\left\{{}\begin{matrix}x-1=1-3x\\x-1=-1+3x\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}4x=2\\-2x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\x=0\end{matrix}\right.\)
Dấu ngoặc vuông nhé
thánh bấm nhầm
a) Đặt A(x) = 0
Ta có:
3(x + 2) - 2x(x + 2) = 0
=> (x + 2)(3 - 2x) = 0
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\3-2x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-2\\2x=3\Rightarrow x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy nghiệm của đa thức A(x) là x = -2 hoặc \(x=\dfrac{3}{2}\)
b) Đặt B(x) = 0
Ta có:
2x + 8 - 23 = 0
=> 2x + 8 = 23
=> 2x = 15
\(\Rightarrow x=\dfrac{15}{2}\)
Vậy nghiệm của đa thức B(x) là \(x=\dfrac{15}{2}\)
c) Đặt C(x) = 0
Ta có:
-x5 + 5 = 0
=> -x5 = -5
=> x5 = 5
\(\Rightarrow x=\sqrt[5]{5}\)
Vậy nghiệm của đa thức C(x) là \(x=\sqrt[5]{5}\)
d) Đặt D(x) = 0
Ta có:
2x3 - 18x = 0
=> x(2x2 - 18) = 0
\(\Rightarrow\left[{}\begin{matrix}x=0\\2x^2-18=0\Rightarrow2x^2=18\Rightarrow x^2=9\Rightarrow x=\pm3\end{matrix}\right.\)
Vậy nghiệm của đa thức D(x) là x = 0 hoặc \(x=\pm3\)
e) Đặt E(x) = 0
Ta có:
\(-\dfrac{2}{3}x+\dfrac{5}{9}=0\)
\(\Rightarrow-\dfrac{2}{3}x=-\dfrac{5}{9}\)
\(\Rightarrow x=\dfrac{5}{6}\)
Vậy nghiệm của đa thức E(x) là \(x=\dfrac{5}{6}\)
g) Đặt G(x) = 0
Ta có:
\(\dfrac{4}{25}-x^2=0\)
\(\Rightarrow x^2=\dfrac{4}{25}\)
\(\Rightarrow x=\pm\left(\dfrac{2}{5}\right)\)
Vậy nghiệm của đa thức G(x) là \(x=\pm\left(\dfrac{2}{5}\right)\)
h) Đặt H(x) = 0
Ta có:
x2 - 2x + 1 = 0
=> x2 - 2x = -1
=> x(x - 2) = -1
=> Ta có trường hợp:
+/ x = -1
Và x - 2 = 1 => x = 3
Mà \(-1\ne3\) => Không tồn tại trường hợp x = -1 và x - 2 = 1
+/ x = 1
Và x - 2 = -1 => x = 1
Vậy nghiệm của đa thức H(x) là x = 1
k) Đặt K(x) = 0
Ta có:
5x . (-2x2) . 4x . (-6x) = 0
=> 240x5 = 0
=> x5 = 0
=> x = 0
Vậy nghiệm của đa thức K(x) là x = 0
Cần đáp án hay cả cách làm bạn ơi