K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2018

a)

\(A\left(x\right)=3x^3+3x^2+2x-1\)

Bậc của A(x) là 3

Hệ số tự do A(x) là -1

Hệ số cao nhất của A(x) là 3

Tại A(-2)

\(A=3.\left(-2\right)^3+3.\left(-2\right)^2+2.\left(-2\right)-1\)

\(=-17\)

b)

\(B\left(x\right)=5x^4+6x-2x^2+4-5x^4-5x\)

\(=\left(5x^4-5x^4\right)+\left(-2x^2\right)+\left(6x-5x\right)+4\)

\(=-2x^2+x+4\)

c)

\(A\left(x\right)-B\left(x\right)=3x^3+3x^2+2x-1-\left(-2x^2+x+4\right)\)

                              \(=3x^3+3x^2+2x-1+2x^2-x-4\)

                              \(=3x^3+\left(3x^2+2x^2\right)+\left(2x-x\right)+\left(-1-4\right)\)

                              \(=3x^3+5x^2+x-5\)

d)

\(C\left(x\right)-2.\left(-2x^2+x+4\right)=3x^3+3x^2+2x-1\)

\(C\left(x\right)=3x^3+3x^2+2x-1+2.\left(-2x^2+x+4\right)\)

\(C\left(x\right)=3x^3+3x^2+2x-1-4x^2+2x+8\)

\(C\left(x\right)=3x^3+\left(3x^2-4x^2\right)+\left(2x+2x\right)+\left(-1+8\right)\)

\(C\left(x\right)=3x^3-x^2+4x+7\)

chúc bạn học giỏi

             

19 tháng 4 2019

\(B\left(x\right)=x^5+3x^3+x=x\left(x^4+3x^2+1\right)=x\left(x^4+x^2+x^2+1+x^2\right)=x\left[x^2\left(x^2+1\right)+x^2+1+x^2\right]\)

\(=x\left[\left(x^2+1\right)\left(x^2+1\right)+x^2\right]=x\left[\left(x^2+1\right)^2+x^2\right]\)

Vì: \(x^2+1>0,x^2\ge0\)nên \(\left(x^2+1\right)^2+x^2>0\)

Vậy B(x)  có nghiệm khi x=0

4 tháng 1 2018

c. Ta có h(x) = 0 ⇒ 5x + 1 = 0 ⇒ x = -1/5

Vậy nghiệm của đa thức h(x) là x = -1/5 (1 điểm)

13 tháng 5 2017

A(x) phải là: \(4x^4+6x^2-7x^3..\) chứ nhỉ?

13 tháng 5 2017

Thôi dc rồi mình làm theo ý mình nhé.

\(A\left(x\right)=4x^4-6x^2-7x^3-5x-6\)

\(B\left(x\right)=-5x^2+7x^3+5x+4-4x^4\)

 Bài này không yêu cầu sắp xếp nên thôi tính luôn. Mình chỉ sắp xếp lại KQ thôi

a/ - Tính:

 \(M\left(x\right)=A\left(x\right)+B\left(x\right)\)

\(M\left(x\right)=4x^4+6x^2-7x^3-5x-6-5x^2+7x^3+5x+4-4x^4\)

\(M\left(x\right)=x^2-2\)

- Tìm nghiệm: 

\(M\left(x\right)=x^2-2=0\Leftrightarrow x^2=2\Leftrightarrow x=-\sqrt{2};x=\sqrt{2}\)

b/ \(C\left(x\right)+B\left(x\right)=A\left(x\right)\Rightarrow C\left(x\right)=A\left(x\right)-B\left(x\right)\)

\(C\left(x\right)=4x^4-6x^2-7x^3-5x-6-\left(-5x^2+7x^3+5x+4-4x^4\right)\)

\(C\left(x\right)=4x^4-6x^2-7x^3-5x-6+5x^2-7x^3-5x-4+4x^4\)

\(C\left(x\right)=8x^4-14x^3-x^2-10x-10\)

3 tháng 5 2023

\(a,A\left(x\right)=-3x^3+2x^2-6+5x+4x^3-2x^2-4-4x\\ =\left(-3x^3+4x^3\right)+\left(2x^2-2x^2\right)+\left(5x-4x\right)+\left(-6-4\right)\\ =x^3+0+x-10\\ =x^3+x-10\)

Bậc của đa thức \(3\)

Hệ số cao nhất là \(1\)

\(b,B\left(x\right)=A\left(x\right).\left(x-1\right)=\left(x^3+x-10\right)\left(x-1\right)\\ =x^3.x+x.x-10x-x^3-x+10\\ =x^4+x^2-x^3-x-10x+10\\ =x^4-x^3+x^2-11x+10\)

Thay \(x=2\) vào \(B\left(x\right)\)

\(=2^4-2^3+2^2-11.2+10\\ =0\) 

Vậy tại \(x=2\) thì \(B\left(x\right)=0\)

4 tháng 6 2018

h(x)=5x+1

nghiệm_của_đa_thức_h(x)_là_-1/5

1 tháng 5 2017

a)h(x)=f(x)-g(x)

        =(2x3 +3x2 -2x +3)-(2x3 +3x2 -7x +2)

        =2x3 + 3x2 - 2x +3 - 2x3 -3x2 + 7x -2

        =5x+1

b)h(x)=5x+1=0

=>5x=-1

    x=\(\frac{-1}{5}\)

4 tháng 4 2021

câu hỏi bạn ơi

 

5 tháng 4 2021

a)

\(f\left(x\right)=x^4-5x^2-x^3+7x^2+3x-8=x^4-x^3+2x^2+3x-8\\ g\left(x\right)=x^3-3x^2-x^4-3x-17+2x^2=-x^4+x^3-x^2-3x-17\\ f\left(x\right)+g\left(x\right)=x^2-25\)

b) 

\(f\left(x\right)+g\left(x\right)=0\\ \Leftrightarrow x^2-25=0\Leftrightarrow x=\pm5\)