Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx-2=0\left(vn\right)\end{matrix}\right.\) (vô nghiệm do \(sinx\le1\) ; \(\forall x\))
\(\Leftrightarrow x=k\pi\)
b/ \(\Leftrightarrow\left[{}\begin{matrix}2sinx-3=0\\2sinx-\sqrt{2}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{3}{2}\left(vn\right)\\sinx=\frac{\sqrt{2}}{2}=sin\frac{\pi}{4}\end{matrix}\right.\) (lý do vô nghiệm như câu a)
\(\Rightarrow\left[{}\begin{matrix}sinx=\frac{\pi}{4}+k2\pi\\sinx=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
c/ ĐKXĐ: \(sinx\ne-\frac{1}{2}\)
\(\Leftrightarrow2sinx-1=6sinx+3\)
\(\Leftrightarrow4sinx=-4\Rightarrow sinx=-1\)
\(\Rightarrow x=-\frac{\pi}{2}+k2\pi\)
d/ \(\Leftrightarrow2=3-sinx\)
\(\Leftrightarrow sinx=1\Rightarrow x=\frac{\pi}{2}+k2\pi\)
(các câu \(k\in Z\) )
a/ \(\Leftrightarrow2sin\left(2x-x\right)-1=0\)
\(\Leftrightarrow2sinx-1=0\Rightarrow sinx=\frac{1}{2}=sin\left(\frac{\pi}{6}\right)\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
b/ \(\Leftrightarrow sin\left(2x+x\right)+sin3x=\sqrt{2}\)
\(\Leftrightarrow2sin3x=\sqrt{2}\)
\(\Leftrightarrow sin3x=\frac{\sqrt{2}}{2}=sin\left(\frac{\pi}{4}\right)\)
\(\Rightarrow\left[{}\begin{matrix}3x=\frac{\pi}{4}+k2\pi\\3x=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{12}+\frac{k2\pi}{3}\\x=\frac{\pi}{4}+\frac{k2\pi}{3}\end{matrix}\right.\)
\(\Leftrightarrow2m.2^x+\left(2m+1\right)\left(3-\sqrt{5}\right)^x+\left(3+\sqrt{5}\right)^x=0\)
\(\Leftrightarrow\left(\frac{3+\sqrt{5}}{2}\right)^x+\left(2m+1\right)\left(\frac{3-\sqrt{5}}{2}\right)^x+2m< 0\)
Đặt \(t=\left(\frac{3+\sqrt{5}}{2}\right)^x,0< t\le1\Rightarrow\frac{1}{t}=\left(\frac{3-\sqrt{5}}{2}\right)^x\)
Phương trình trở thành :
\(t+\left(2m+1\right)\frac{1}{t}+2m=0\) (*)
a. Khi \(m=-\frac{1}{2}\) ta có \(t=1\) suy ra \(\left(\frac{3+\sqrt{5}}{2}\right)^x=1\Leftrightarrow x=0\)
Vậy phương trình có nghiệm là \(x=0\)
b. Phương trình (*) \(\Leftrightarrow t^2+1=-2m\left(t+1\right)\Leftrightarrow\frac{t^2+1}{t+1}=-2m\)
Xét hàm số \(f\left(t\right)=\frac{t^2+1}{t+1};t\in\)(0;1]
Ta có : \(f'\left(t\right)=\frac{t^2+2t+1}{\left(t+1\right)^2}\Rightarrow f'\left(t\right)=0\Leftrightarrow=-1+\sqrt{2}\)
t f'(t) f(t) 0 1 0 - + 1 1 -1 + căn 2 2 căn 2 - 2
Suy ra phương trình đã cho có nghiệm đúng
\(\Leftrightarrow2\sqrt{2}-2\le-2m\le1\Leftrightarrow\sqrt{2}-1\ge m\ge-\frac{1}{2}\)
Vậy \(m\in\left[-\frac{1}{2};\sqrt{2}-1\right]\) là giá trị cần tìm
Ko được đâu bạn, \(\frac{k360^0}{3}=k120^0\) đâu thể thành \(k90^0\) được
a/ \(\Leftrightarrow sin\left(50^0-3x\right)=-\frac{1}{2}=sin\left(-30^0\right)\)
\(\Rightarrow\left[{}\begin{matrix}50^0-3x=-30^0+k360^0\\50^0-3x=210^0+k360^0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{80^0}{3}+k120^0\\x=-\frac{160^0}{3}+k120^0\end{matrix}\right.\)
b/ \(\Leftrightarrow sinx=-\frac{\sqrt{3}}{2}=sin\left(-60^0\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-60^0+k360^0\\x=240^0+k360^0\end{matrix}\right.\)