Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cái này đúng
a) f(x)=x.(1-2x)+(2x2-x+4)
=x-2x2+2x2-x+4
=-2x2+2x2+x-x+4
=4≠0
=> đa thức f(x) vô nghiệm
b) g(x)=x.(x-5)-x(x+2)+7x
=x2-5x-x2-2x+7x
=x2-x2-5x-2x+7x
=0
=> đa thức g(x) có vô số nghiệm
c) h(x)=x(x-1)+1
=x2-x+1
=x2-1/2x-1/2x+1/4+3/4
=x.(x-1/2)-1/2.(x-1/2)+3/4
=(x-1/2)(x-1/2)+3/4
=(x-1/2)2+3/4
Vì (x-1/2)2≥0 nên (x-1/2)2+3/4>0
hay h(x) >0
Vậy h(x) vô nghiệm
a;
F(x) = 0 => x ( 1-2x) + (2x^2 - x + 4) = 0
=> x - 2x^2 + 2x^2 -x + 4 = 0
=> 0x + 4 = 0 (loại)
=> F(x) vô nghiệm
Bài 1 :
\(A=x^2-2xy^2+y^4=\left(x-y^2\right)^2=-\left(y^2-x\right)^2\)
Mà \(B=-\left(y^2-x\right)^2\)
Nên ta có : đpcm
Bài 2
Đặt \(\left(x+1\right)\left(x-2\right)\left(2x-1\right)=0\)
TH1 : x = -1
TH2 : x = 2
TH3 : x = 1/2
Bài 4 :
a, \(\left(2x+3\right)\left(5-x\right)=0\Leftrightarrow x=-\frac{3}{2};5\)
b, \(\left(x-\frac{1}{2}\right)\left(3x+1\right)\left(2-x\right)=0\Leftrightarrow x=\frac{1}{2};-\frac{1}{3};2\)
c, \(x^2+2x=0\Leftrightarrow x\left(x+2\right)=0\Leftrightarrow x=0;-2\)
d, \(x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow x=0;1\)
Bài 1:
a) \(x^2+7x-8=x^2+2.x.\frac{7}{2}+\frac{49}{4}-\frac{81}{4}\)
\(=\left(x+\frac{7}{2}\right)^2-\frac{81}{4}=0\)
\(\Rightarrow\left(x+\frac{7}{2}\right)^2=\frac{81}{4}\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{7}{2}=\frac{9}{2}\\x+\frac{7}{2}=\frac{-9}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-8\end{cases}}\)
Vậy nghiệm của đa thức m(x) là 1 hoặc -8
b) \(\left(x-3\right)\left(16-4x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\16-4x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}\)
Vậy nghiệm của đa thức g(x) là 3 hoặc 4
c) \(5x^2+9x+4=0\)
\(\Rightarrow x^2+\frac{9}{5}x+\frac{4}{5}=0\)
\(\Rightarrow x^2+2x.\frac{9}{10}+\frac{81}{100}-\frac{1}{100}=0\)
\(\Rightarrow\left(x+\frac{9}{10}\right)^2-\frac{1}{100}=0\)
\(\Rightarrow\left(x+\frac{9}{10}\right)^2=\frac{1}{100}\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{9}{10}=\frac{1}{10}\\x+\frac{9}{10}=\frac{-1}{10}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-4}{5}\\x=-1\end{cases}}\)
Vậy...
\(f_{\left(x\right)}-g_{\left(x\right)}=2x^5+x^4+1x^2+x+1-\left(2x^5+x^4-x^2+1\right)\)
\(=2x^5+x^4+1x^2+x+1-2x^5-x^4+x^2-1\)
\(=\left(2x^5-2x^5\right)+\left(x^4-x^4\right)+\left(1x^2+x^2\right)+x+\left(1-1\right)\)
\(=2x^2+x\)
+, Đặt \(2x^2+x=0\)
\(\Leftrightarrow x.2x=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x=0\end{cases}}\Leftrightarrow x=0\)
a, Để (x - 2) (x + 2) có nghiệm thì (x - 2) (x + 2) = 0
<=> \(\left[{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy x = 2; x = -2 là nghiệm của đa thức (x - 2) (x + 2)
b,Để (x - 1) (x2 + 1) có nghiệm thì (x - 1) (x2 + 1) = 0
<=>\(\left[{}\begin{matrix}x-1=0< =>x=1\\x^2+1>0\forall x\end{matrix}\right.\)
Vậy x = 1 là nghiệm của đa thức (x - 1) (x2 + 1)
a) x là nghiệm của đa thức (x-2).(x+2)
<=>(x-2).(x+2)=0
<=>\(\left[{}\begin{matrix}x+2=0\\x-2=0\end{matrix}\right.\)
<=>\(\left[{}\begin{matrix}x=-2\\x=2\end{matrix}\right.\)
Vậy nghiệm của đa thức (x-2).(x+2) là \(\left[{}\begin{matrix}x=-2\\x=2\end{matrix}\right.\)
b) x là nghiệm của đa thức (x-1).(x2+1)
<=>(x-1).(x2+1)=0
<=>\(\left[{}\begin{matrix}x-1=0\\x^2+1=0\end{matrix}\right.\)
<=>\(\left[{}\begin{matrix}x=1\\x^2=-1\end{matrix}\right.\)
vì x2=-1 vô lí
<=>x=1
Vậy nghiệm của đa thức (x-1).(x2+1) là x=1
a)f(x)=-x5-7x4-2x3+x2+4x+9
g(x)=x5+7x4+2x3+2x2-3x-9
b)h(x)=f(x)+g(x)
=(-x5-7x4-2x3+x2+4x+9)+(x5+7x4+2x3+2x2-3x-9)
=-x5-7x4-2x3+x2+4x+9+x5+7x4+2x3+2x2-3x-9
=-x5+x5-7x4+7x4-2x3+2x3+x2+2x2+4x-3x+9-9
=3x2+x
Vậy h(x)=3x2+x
c)ta có h(x)=0
=>3x2+x=0
x(3x+1)=0
x=0 hoặc 3x+1=0
x=0 hoặc x=-1/3
vậy nghiệm của đa thức h(x) là x=0 hoặc x=-1/3
Giả sử:\(A\left(x\right)=0\)
\(\Leftrightarrow\left(2x-4\right)\left(x+1\right)=0\)
\(\rightarrow\left[{}\begin{matrix}2x-4=0\\x+1=0\end{matrix}\right.\) \(\rightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Vậy \(x=\left\{2;-1\right\}\) là nghiệm của đa thức \(A\left(x\right)\)
đặt A(x) = 0
\(\Leftrightarrow\left(2x-4\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-4=0\\x+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)