K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2019

a) \(2x^2-7x-9=0\)

\(\Leftrightarrow2x^2+2x-9x-9=0\)

\(\Leftrightarrow2x\left(x+1\right)-9\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x-9\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{9}{2}\end{cases}}\)

24 tháng 4 2019

b) \(4x^2-17x-15=0\)

\(\Leftrightarrow\left(2x\right)^2-2\cdot2x\cdot\frac{17}{4}+\frac{289}{16}-\frac{529}{16}=0\)

\(\Leftrightarrow\left(2x-\frac{17}{4}\right)^2=\frac{529}{16}=\left(\pm\frac{23}{4}\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}2x-\frac{17}{4}=\frac{23}{4}\\2x-\frac{17}{4}=\frac{-23}{4}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x=10\\2x=-\frac{3}{2}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=-\frac{3}{4}\end{cases}}\)

8 tháng 5 2019

1, 3x^2 - 4x - 7 =3x^2+3x-7x-7=3x(x+1)-7(x+1)=(3x-7)(x+1)=0

nhiệm là -1 và 7/3

2,x^3-9x=x(x^2-9)=x(x-3)(x+3)=0

nghiệm là 0, 3 và -3

3,x^3+3x^2+3x+1=(x+1)^3=0

nghiệm là -1

8 tháng 5 2019

Nguyễn Hoàng Long làm kiểu này thì không có được điểm đâu

9 tháng 5 2019

Mina giúp Shino đây nè:3(lần lượt nhá)

Ta có:\(4x^2-4x+1=0\)

\(\Leftrightarrow\left(2x\right)^2-2\cdot2x\cdot1+1^2=0\)

\(\Leftrightarrow\left(2x-1\right)^2=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

9 tháng 5 2019

1/ f(x) = 4x2 - 4x + 1

4x2 - 4x + 1 = 0

=> 4x2 + 2x + 2x + 1 = 0

=> 2x(2x + 1) + (2x + 1) = 0

=> (2x + 1)(2x + 1) = 0

=> (2x + 1)2 = 0

=> 2x + 1 = 0

=> 2x = -1

=> x = -1/2

Vậy nghiệm của đa thức f(x) là x = -1/2

8 tháng 5 2019

1) \(3x^2-4x-7=0\)

\(\Leftrightarrow3x^2+3x-7x-7=0\)

\(\Leftrightarrow3x\left(x+1\right)-7\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x-7\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{7}{3}\end{cases}}\)

Vậy....

8 tháng 5 2019

2) \(x^3-9x=0\)

\(\Leftrightarrow x\left(x^2-9\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-9=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2=9\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm3\end{cases}}\)

Vậy....

3 tháng 5 2019

xét f(x) = 2x - 4 = 0

=> 2x = 4

=> x = 2

xét g(x) = x^2 - ax + 2 = 0 

=> g(2) = 2^2 - 2a + 2 = 0

=>6 - 2a = 0

=> 2a = 6

=> a = 3

vậy a = 3 để nghiệm của f(x) đồng thời là nghiệm của g(x)

3 tháng 5 2019

Ta có f(x)=0

<=> 2x-4=0

<=> 2x=4

<=> x=2

Vậy x=2 là nghiệm của f(x)

Mà nghiệm của f(x) cũng là nghiệm của g(x)

=> g(2)=0

<=> 2^2-2a+2=0

<=>2a=6

<=>a=3

Bài 1 : Cho các đa thức :      f(x) = 2x4 – 3x2 – 2x4 + 4x3 – 2x + 3x – 15     g(x) = – 4x3 – 3x4 – 2x + x2 + 2 + 3x4 – 12Tính f(x) + g(x) và g(x) – f(x)Bài 2: Cho đơn thức A = a) Thu gọn Ab) Tìm bậc và phần hệ số của đơn thức ABài 3 a) Tìm đa thức M và bậc của M biết :M + 3x2y – 4xy2 + 5xy = 9x2y – 7xy + 6xy2b) Cho các đa thức :f(x) = 5x4 + 4x3 – 10x2 – 7x + 10 và g(x) = 4x4 + 5x2 – 9x – 8Tính f(x) +...
Đọc tiếp

Bài 1 : Cho các đa thức :

      f(x) = 2x4 – 3x2 – 2x4 + 4x3 – 2x + 3x – 15

     g(x) = – 4x3 – 3x4 – 2x + x2 + 2 + 3x4 – 12

Tính f(x) + g(x) và g(x) – f(x)

Bài 2: Cho đơn thức A =

a) Thu gọn A

b) Tìm bậc và phần hệ số của đơn thức A

Bài 3

a) Tìm đa thức M và bậc của M biết :

M + 3x2y – 4xy2 + 5xy = 9x2y – 7xy + 6xy2

b) Cho các đa thức :

f(x) = 5x4 + 4x3 – 10x2 – 7x + 10 và g(x) = 4x4 + 5x2 – 9x – 8

Tính f(x) + g(x)

Bài 4:  Cho các đa thức:

f(x) = 1 + 2x5 – 7x4 – 10x + 3x3   và  

g(x) = 5x2 – 9x5 + x  + 7 – 2x4 + 15x3

 a/ Sắp xếp các đa thức theo lũy thừa giảm của biến.

 b/ Tính f(x) + g(x) và g(x) – f(x)

Bài 5: Cho các đa thức sau:

P(x) = 5x – 7x4 + 8x3 – 2x2 – 4x3 + 6x4 – 9x +  

Q(x) = – 5x5 + 4x3 – 8x2 – 12x3 + 9x2 + 7

a/ Hãy thu gọn, sắp xếp các hạng tử của P(x), Q(x) theo lũy thừa giảm dần của biến x

b/ Tính P(x) + Q(x) và P(x) – Q(x)

2
7 tháng 8 2020

Bài 1 : 

Theo bài ra ta có : \(f\left(x\right)=2x^4-3x^2-2x^4+4x^3-2x+3x-15\)

\(=-3x^2+4x^3+x-15\)

\(g\left(x\right)=-4x^3-3x^4-2x+x^2+2+3x^4-12\)

\(=-4x^3-2x+x^2-10\)

\(f\left(x\right)+g\left(x\right)=-3x^2+4x^3+x-15-4x^3-2x+x^2-10\)

\(=-2x^2-x-25\)

\(g\left(x\right)-f\left(x\right)=-4x^3-2x+x^2-10+3x^2-4x^3-x+15\)

\(=-8x^3-3x+4x^2+5\)

Chị làm nốt mấy bài sau nhé, tương tự thôi

7 tháng 8 2020

Bài 3 : a) \(M+3x^2y-4xy^2+5xy=9x^2y-7xy+6xy^2\)

\(M=\left(9x^2y-7xy+6xy^2\right)-\left(3x^2y-4xy^2+5xy\right)\)

\(M=9x^2y-7xy+6xy^2-3x^2y+4xy^2-5xy\)

\(M=\left(9x^2y-3x^2y\right)+\left(-7xy-5xy\right)+\left(6xy^2+4xy^2\right)\)

\(M=6x^2y-12xy+10xy^2\)

=> bậc của M là 3

b.

f(x)                    = 5x4 + 4x3 - 10x2 - 7x + 10

g(x)                   = 4x4          + 5x2 - 9x - 8

f(x) + g(x)         = 9x4 + 4x3  - 5x2 - 16x + 2

Bài 4 : a.

f(x) = 2x5 - 7x4 + 3x3 - 10x + 1

g(x) = -9x5 - 2x4 + 15x3 + 5x2 + x + 7

b. f(x)                = 2x5 - 7x4 + 3x3           - 10x + 1

   g(x)                = -9x5 - 2x4 + 15x3 + 5x2 + x + 7

f(x) + g(x)         = -7x5 - 9x4 + 18x3 + 5x2 - 9x + 8

Trừ tương tự

Bài 5 cũng như bài 4

Số dữ và có cái vô nghiệm ... câu này nhìn qua con làm thôi.

a, \(5x^2-x+4=0\)

Ta có : \(\left(-1\right)^2-4.4.5=1-80=-79< 0\)

Nên phương trình vô nghiệm 

b, \(x^2+3x-2=0\)

Ta có : \(3^2-4.\left(-2\right)=9+8=17>0\)

Suy ra : \(x_1=\frac{-3-\sqrt{17}}{2};x_2=\frac{-3+\sqrt{17}}{2}\)

a, \(5x^2-x+4=0\)

Ta có : \(\left(-1\right)^2-4.4.5=1-80=-79< 0\)

Nên phương trình vô nghiệm 

b, \(x^2+3x-2=0\)

Ta có : \(3^2-4.\left(-2\right)=9+8=17>0\)

Suy ra : \(x_1=\frac{-3-\sqrt{17}}{2};x_2=\frac{-3+\sqrt{17}}{2}\)

23 tháng 7 2021

a) \(f\left(x\right)-g\left(x\right)=\left[x\left(x^2-2x+7\right)-1\right]-\left[x\left(x^2-2x-1\right)-1\right]\)

\(f\left(x\right)-g\left(x\right)=x^3-2x^2+7x-1-x^3+2x^2+x+1\)

\(f\left(x\right)-g\left(x\right)=8x\)

 \(f\left(x\right)+g\left(x\right)=x\left(x^2-2x+7\right)-1+x\left(x^2-2x-1\right)-1\)

 \(f\left(x\right)+g\left(x\right)=x^3-2x^2+7x-1+x^3-2x^2-x-1\)

 \(f\left(x\right)+g\left(x\right)=2x^3-4x^2+6x-2\)

b) 8x=0

=> x=0

=> Nghiệm đa thức f(x)-g(x)

c) Thay \(x=-\frac{3}{2}\)vào BT f(x)+g(x) ta được :

   \(2.\left(-\frac{3}{2}\right)^3-4\left(-\frac{3}{2}\right)^2+6\left(-\frac{3}{2}\right)-2\)

\(=6,75+9-9-2\)

\(=4,75\)

#H