Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm x dễ thì tự làm nha:
\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)
\(\Rightarrow\dfrac{x+4}{2000}+\dfrac{x+3}{2001}-\dfrac{x+2}{2002}-\dfrac{x+1}{2003}=0\)
\(\Rightarrow\left(\dfrac{x+4}{2000}+1\right)+\left(\dfrac{x+3}{2001}+1\right)-\left(\dfrac{x+2}{2002}+1\right)-\left(\dfrac{x+1}{2003}\right)=0\)\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)
\(\Rightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)
\(\Rightarrow x+2004=0\Rightarrow x=-2004\)
1.
a)\(\left(\dfrac{1}{2}\cdot\left(-2\right)\cdot\dfrac{-1}{3}\right)\cdot\left(x^2\cdot x^2\cdot x^2\right)\cdot\left(y^2\cdot y^3\right)\cdot z\)
\(\dfrac{1}{3}x^6y^5z\)
Deg=12
\(A=5-\left|2x-1\right|\le5\)
Dấu "=" xảy ra khi:
\(2x=1\Leftrightarrow x=\dfrac{1}{2}\)
\(B=\dfrac{1}{\left|x-1\right|+3}\le\dfrac{1}{3}\)
Dấu "=" xảy ra khi:
\(x=1\)
\(C=x+\dfrac{1}{2}-\left|x-\dfrac{2}{3}\right|\le\left|x+\dfrac{1}{2}-x-\dfrac{2}{3}\right|=\dfrac{1}{6}\)
Dấu "=" xảy ra khi: \(-\dfrac{1}{2}\le x\le\dfrac{2}{3}\)
Ta có: \(\left|2x-1\right|\le0\) với mọi x
\(\Rightarrow5-\left|2x-1\right|\le5-0\) với mọi x
\(\Leftrightarrow A\le5\)
\(\Rightarrow A_{max}=5\)
Dấu \("="\) xảy ra khi:
\(\left|2x-1\right|=0\\ 2x-1=0\\ 2x=1\\ x=1:2=0,5\)
Vậy A đạt giá trị lớn nhất khi \(x=0,5\)
a) \(x+\dfrac{3}{10}=\dfrac{-2}{5}\)
\(x=\dfrac{-2}{5}-\dfrac{3}{10}\)
\(x=\dfrac{-7}{10}\)
b) \(x+\dfrac{5}{6}=\dfrac{2}{5}-\left(-\dfrac{2}{3}\right)\)
\(x+\dfrac{5}{6}=\dfrac{2}{5}+\dfrac{2}{3}\)
\(x+\dfrac{5}{6}=\dfrac{16}{15}\)
\(x=\dfrac{16}{15}-\dfrac{5}{6}\)
\(x=\dfrac{7}{30}\)
c) \(1\dfrac{2}{5}x+\dfrac{3}{7}=-\dfrac{4}{5}\)
\(\dfrac{7}{5}x+\dfrac{3}{7}=-\dfrac{4}{5}\)
\(\dfrac{7}{5}x=-\dfrac{4}{5}-\dfrac{3}{7}\)
\(\dfrac{7}{5}x=\dfrac{-43}{35}\)
\(\Rightarrow x=\dfrac{-43}{49}\)
d) \(\left[x+\dfrac{3}{4}\right]-\dfrac{1}{3}=0\)
\(\left[x+\dfrac{3}{4}\right]=0+\dfrac{1}{3}\)
\(\left[x+\dfrac{3}{4}\right]=\dfrac{1}{3}\)
\(x=\dfrac{1}{3}-\dfrac{3}{4}\)
\(x=\dfrac{-5}{12}\)
e) \(\left[x+\dfrac{4}{5}\right]-\left(-3,75\right)=-\left(-2,15\right)\)
\(\left[x+\dfrac{4}{5}\right]+3,75=2,15\)
\(x+\dfrac{4}{5}=2,15-3,75\)
\(x+\dfrac{4}{5}=-\dfrac{8}{5}\)
\(x=\dfrac{-8}{5}-\dfrac{4}{5}\)
\(x=\dfrac{-12}{5}\)
f) \(\left(x-2\right)^2=1\)
\(\Rightarrow x=1\)
Sức chịu đựng có giới hạn -.-
- Mình tiếp tục cho Nguyễn Phương Trâm nhé.
g, \(\left(2x-1\right)^3=-27\)
\(\Rightarrow\left(2x-1\right)^3=\left(-3\right)^3\)
\(\Rightarrow2x-1=-3\)
\(\Rightarrow2x=-2\)
=> \(x=-1\)
- Vậy x = -1
h,\(\dfrac{x-1}{-15}=-\dfrac{60}{x-1}\)
\(\Rightarrow\left(x-1\right)^2=-60.\left(-15\right)\)
\(\Rightarrow\left(x-1\right)^2=900 \)
\(\Rightarrow\left(x-1\right)^2=30^2\Rightarrow x-1=30\)
=> x = 31
i,\(x:\left(\dfrac{-1}{2}\right)^3=\dfrac{-1}{2}\)
=> \(x:\left(-\dfrac{1}{8}\right)=-\dfrac{1}{2}\)
\(\Rightarrow x=\dfrac{1}{16}\)
- Vậy x=\(\dfrac{1}{16}\)
j, \(\left(\dfrac{3}{4}\right)^5.x=\left(\dfrac{3}{4}\right)^7\)
\(\Rightarrow \left(\dfrac{3}{4}\right).x=\left(\dfrac{3}{4}\right)^2\)
\(\Rightarrow x=\left(\dfrac{3}{4}\right)^2:\dfrac{3}{4}\)
\(\Rightarrow x=\dfrac{3}{4}\)
- Vạy x = \(\dfrac{3}{4}\)
k, \(8^x:2^x=4\Rightarrow\left(8:2\right)^x=4\)
=>\(4^x=4\)
=> x = 1
- Vậy x = 1
\(d.Q=\left(\dfrac{1}{2}x-1\right).\left(\dfrac{1}{2}-\dfrac{2}{3}\right)=0\)
\(\Rightarrow\dfrac{1}{2}x-1=0\Rightarrow x=2\)
e. \(-4x+3=0\Rightarrow-4x=-3\Rightarrow x=\dfrac{4}{3}\)
g. \(x^2+4x-3=0\Rightarrow x^2+2.2x+4-7=0\)
\(\Rightarrow\left(x+2\right)^2-7=0\)
\(\Rightarrow\left[{}\begin{matrix}x+2=\sqrt{7}\\x+2=-\sqrt{7}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2+\sqrt{7}\\-2-\sqrt{7}\end{matrix}\right.\)
h.
\(x^2+4x+5=0\)
Ta có:
\(x^2+4x+5=x^2+2.x.2+4+1=\left(x+2\right)^2+1>0\)
=> đa thức vô nghiệm
i)\(2x^2-2x+3=0\)
\(\Leftrightarrow\left(\sqrt{2}x\right)^2-2\sqrt{2}\cdot\dfrac{1}{\sqrt{2}}x+\left(\dfrac{1}{\sqrt{2}}\right)^2+\dfrac{5}{2}=0\)
\(\Leftrightarrow\left(\sqrt{2}x-\dfrac{1}{\sqrt{2}}\right)^2+\dfrac{5}{2}=0\)(vô nghiệm)
đặt C(x)=0
\(\Leftrightarrow-7x+\dfrac{1}{2}+2x^3-2x-16-2x^3=0\)
=>-9x-31/2=0
=>-9x=31/2
hay x=-31/18