\(2^{2^{10}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2018

đặt A=\(x^2+x\sqrt{3}+1\)

= \(x^2+2x.\dfrac{\sqrt{3}}{2}+\dfrac{3}{4}+\dfrac{1}{4}\)

= \(\left(x^2+2x.\dfrac{\sqrt{3}}{2}+\dfrac{3}{4}\right)+\dfrac{1}{4}\)

= \(\left(x+\dfrac{3}{4}\right)^2+\dfrac{1}{4}\)

do \(\left(x+\dfrac{3}{4}\right)^2\ge0\) ∀ x

\(\left(x+\dfrac{3}{4}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}\)

⇔ A \(\ge\dfrac{1}{4}\)

=> Min A = \(\dfrac{1}{4}\) dấu "=" xảy ra khi x= \(\dfrac{-3}{4}\)

10 tháng 6 2018

Giải:

Đặt \(A=x^2+x\sqrt{3}+1\)

\(\Leftrightarrow A=x^2+2.x\dfrac{\sqrt{3}}{2}+\left(\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}\)

\(\Leftrightarrow A=\left(x+\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}\)

\(\left(x+\dfrac{\sqrt{3}}{2}\right)^2\ge0;\forall x\)

\(\Leftrightarrow\left(x+\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4};\forall x\)

\(\Leftrightarrow A\ge\dfrac{1}{4};\forall x\)

\(\Leftrightarrow A_{Min}=\dfrac{1}{4}\)

\(\Leftrightarrow x+\dfrac{\sqrt{3}}{2}=0\Leftrightarrow x=-\dfrac{\sqrt{3}}{2}\)

Vậy ...

12 tháng 10 2019

<=> (x-4)(x-3) = \(\sqrt{3}\)(y+1) 

Nếu y là số nguyên khác -1 thì y+1 là số nguyên; \(\sqrt{3}\)là số vô tỉ nên \(\sqrt{3}\left(y+1\right)\)là số vô tỉ

mà x-4 và x-3 đều là số nguyên nên (x-3)(x-4) là số nguyên => vô lý

vậy y = -1 => (x-4)(x-3)=0 <=> x=4 hoặc x= 3

vậy có 2 nghiêm thỏa mãn (x;y) = (4;-1); (x;y) = (3;-1)

18 tháng 7 2016

khỏi cần

ta có \(A^2=2+2\sqrt{x\left(2-x\right)}\ge2\)

dấu = xảy ra khi x=4

18 tháng 7 2016

nhanh hơn nhìu nha

Bài 2: So sánh

1) Ta có: \(\left(\sqrt{\frac{10}{17}}\right)^2=\frac{10}{17}\)

\(\left(\frac{3}{4}\right)^2=\frac{9}{16}\)

\(\frac{10}{17}>\frac{9}{16}\)

nên \(\left(\sqrt{\frac{10}{17}}\right)^2>\left(\frac{3}{4}\right)^2\)

hay \(\sqrt{\frac{10}{17}}>\frac{3}{4}\)

2) Ta có: \(\left(1+\sqrt{15}\right)^2=16+2\sqrt{15}\)

\(\left(\sqrt{24}\right)^2=24\)

Ta có: \(2\sqrt{15}=\sqrt{60}< \sqrt{64}=8\)

\(\Leftrightarrow2\sqrt{15}< 8\)

\(\Leftrightarrow16+2\sqrt{15}< 24\)

\(\Leftrightarrow\left(1+\sqrt{15}\right)^2< \left(\sqrt{24}\right)^2\)

hay \(1+\sqrt{15}< \sqrt{24}\)