Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
\(n^3-n^2+2n+7⋮n^2+1\)
\(\Leftrightarrow n^3+n-n^2-1+n+8⋮n^2+1\)
\(\Leftrightarrow n^2-64⋮n^2+1\)
\(\Leftrightarrow n^2+1\in\left\{1;65\right\}\)
\(\Leftrightarrow n\in\left\{0;8;-8\right\}\)
\(\Leftrightarrow n^3+n-n^2-1+n+8⋮n^2+1\)
\(\Leftrightarrow n^2+1\in\left\{1;65\right\}\)
hay \(n\in\left\{0;8;-8\right\}\)
n^3-n^2+2n+7 chia hết cho n^2+1
=>n^3+n-n^2-1+n+6 chia hết cho n^2+1
=>n+6 chia hết cho n^2+1
=>n^2-36 chia hết cho n^2+1
=>n^2+1-37 chia hết cho n^2+1
=>n^2+1 thuộc {1;37}
=>\(n^2\in\left\{0;36\right\}\)
=>n thuộc {0;6;-6}
Ta thử lại, ta thấy n=-6 và n=6 không thỏa mãn
=>n=0
11:
n^3-n^2+2n+7 chia hết cho n^2+1
=>n^3+n-n^2-1+n+8 chia hết cho n^2+1
=>n+8 chia hết cho n^2+1
=>(n+8)(n-8) chia hết cho n^2+1
=>n^2-64 chia hết cho n^2+1
=>n^2+1-65 chia hết cho n^2+1
=>n^2+1 thuộc Ư(65)
=>n^2+1 thuộc {1;5;13;65}
=>n^2 thuộc {0;4;12;64}
mà n là số tự nhiên
nên n thuộc {0;2;8}
Thử lại, ta sẽ thấy n=8 không thỏa mãn
=>\(n\in\left\{0;2\right\}\)
đề bài đúng đây:
cho hình vẽ biết: x//y, biết góc M3= 50 độ. Tính góc M2, M4, N1, N2, N3 ?
có M1=M3=50 độ(2 góc đối đỉnh)
vì m//n
=> M3=N3(2 góc đồng vị)
=> N3=50 độ
a. Q ^ 1 = 60 ° ( kề bù với Q ^ 4 ) mà Q 1 ^ đồng vị với M ^ = 60 ° => a//b
b. Vì a//b N 4 ^ = P ^ 4 = 30 ° ( đồng vị) ⇒ N ^ 1 = N ^ 3 = 150 ° ⇒ N ^ 4 = N ^ 2 = 130 °
D=1212+2222+3232+....+ n2n2
D=1+ 2.(1+1) + 3.(2+1) +.....+ n(n-1 +1)
D=1 + 1.2 +2 + 2.3 + 3 +.......+ (n-1).n + n
D= (1 + 2 +3 +....+n) + (1.2 + 2.3 + 3.4 + ......+ (n-1)n )
D= n(n+1)2n(n+1)2 + n(n+1)(n−1)3n(n+1)(n−1)3
D= 3n(n+1)+2n(n+1)(n−1)63n(n+1)+2n(n+1)(n−1)6
D= n(n+1)(2n+1)6
\(a,n^2=\frac{1}{16}\)
\(n^2=\left(\frac{1}{4}\right)^2\)
\(n=\left|\frac{1}{4}\right|\)
=>\(n=\frac{1}{4}\)hoặc \(n=-\frac{1}{4}\)
\(b,n^3.n^2=\frac{32}{243}\)
\(n^5=\frac{32}{243}\)
\(n^5=\left(\frac{2}{3}\right)^5\)
\(n=\frac{2}{3}\)
\(c,\left(x^2\right)^2=\frac{81}{16}\)
\(x^4=\left(\frac{3}{2}\right)^4\)
=>\(x=\left|\frac{3}{2}\right|\)
\(x=\frac{3}{2}\)hoặc \(x=-\frac{3}{2}\)