Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có: \(A=\frac{4n+1}{2n+3}=\frac{4n+6-5}{2n+3}=\frac{2.\left(2n+3\right)-5}{2n+3}=2-\frac{5}{2n+3}\)
Để A nhận giá trị nguyên
=> 5/2n+3 thuộc Z
=> 5 chia hết cho 2n+3
=> 2n+3 thuộc Ư(5)={1;-1;5;-5}
nếu 2n+3 = 1 => 2n = -2 => n = -1 (TM)
2n+3 = -1 => 2n = -4 => n = -2 (TM)
2n+3 = 5 => 2n = 2 => n = 1 (TM)
2n+3 = -5 => 2n = 8 => n = -4 (TM)
KL:...
b) tìm n thuộc Z để A là phân số tối giản
Để A là phân số tối giản
\(\Rightarrow n\notin\left\{-1;-2;1;-4\right\}\)
a) Để A nhận giá trị nguyên thì 4n+1 phải chia hết cho 2n+3
\(\Rightarrow4n+1⋮2n+3\)(1)
Lại có:\(\left(2n+3\right)\times2⋮2n+3\)
\(\Rightarrow4n+6⋮2n+3\)(2)
Từ (1) và (2) suy ra:
\(\left(4n+6\right)-\left(4n+1\right)⋮2n+3\)
\(\Rightarrow4n+6-4n-1⋮2n+3\)
\(\Rightarrow\left(4n-4n\right)+\left(6-1\right)⋮2n+3\)
\(\Rightarrow5⋮2n+3\)
\(\Rightarrow2n+3\inƯ\left(5\right)\)
mà Ư(5)=(-5;-1;1;5)
\(\Rightarrow2n+3\in\left(-5;-1;1;5\right)\)
\(\Rightarrow2n\in\left(-8;-4;4;8\right)\)
\(\Rightarrow n\in\left(-4;-2;2;4\right)\)
Vậy với \(n\in\left(-4;-2;2;4\right)\)
Gọi d =(2n+3;4n+8) =(A;B)
ta có B -2A = 4n+8 - 4n -6 =2 chia hết cho d
=> d =2 ; nhưng 2n+3 không chia hết cho 2
=>d =1
=> BCNN(A;B) = A.B / UCLN(A;B) =(2n+3)(4n+8):1 =(2n+3)(4n+8)
Vậy BCNN (2n+3;4n+8) =(2n+3)(4n+8)
Để A = 3 khi và chỉ khi \(\frac{4n+9}{2n+3}=3\)
\(\Leftrightarrow4n+9=3\left(2n+3\right)\)
\(\Leftrightarrow4n+9=6n+9\)
\(\Leftrightarrow4n-6n=9-9\)
\(\Leftrightarrow-2n=0\)
\(\Leftrightarrow n=0\)
A = 3
=> 4n+9/2n+3 = 3
=> 4n+9 = (2n+3).3
=> 4n+9 = 6n+9
=> 4n = 6n+9-9 = 6n
=> 6n-4n = 0
=> 2n = 0
=> n = 0
Vậy n = 0
Tk mk nha
Ta có:B=(4n+9)/(2n+3) =(2(2n+3)+3)/(2n+3)=2+(3/2n+3)
B lớn nhất khi và chỉ khi 3/2n+3 lớn nhất <=> 2n+3 nhỏ nhất (2n+3 >0)
n thuộc Z=> 2n+3 thuộc Z => 2n+3=1<=> n=-1
vậy,n=-1
ta nhan ca 2n+3 voi 2 thi dc:
(2n+3).2=4n+9
=>4n+9 chia hết cho 2n+3
4n+9bằng4n+6
Vì 4n+6chia hết2n+3
nên 3 chia hết 2n+3
2n+3 bằng3 (2n+3là 1 vô lý)
2n 0
n 0