K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2023

...

3 tháng 11 2017

Bạn ơi bài này phải cho thêm điều kiện n thuộc Z 

Đặt n^2+2006 = k^2 ( k thuộc N sao)

<=> -2006 = n^2-k^2 = (n-k).(n+k)

<=> n-k thuộc ước của -2006 ( vì n thuộc Z , k thuộc N sao nên n-k và n+k đểu thuộc Z)

Mà k thuộc N sao nên n-k < n+k

Từ đó, bạn tự giải bài toán nhưng nhớ kết hợp cả điều kiện n-k<n+k 

3 tháng 11 2017

Kết quả hình ảnh cho hình ảnh luffyđẹp chưa?

22 tháng 5 2016

c đề thiếu 

22 tháng 5 2016

thiếu gì vậy bạn

7 tháng 4 2018

\(a)\) Ta có : 

\(A=\frac{8n}{4n-3}=\frac{8n-6+6}{4n-3}=\frac{8n-6}{4n-3}+\frac{6}{4n-3}=\frac{2\left(4n-3\right)}{4n-3}+\frac{6}{4n-3}=2+\frac{6}{4n-3}\)

Để A có giá trị nguyên thì \(\frac{6}{4n-3}\) phải có giá trịn nguyên hay \(6⋮\left(4n-3\right)\)\(\Rightarrow\)\(\left(4n-3\right)\inƯ\left(6\right)\)

Mà \(Ư\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

Suy ra : 

\(4n-3\)\(1\)\(-1\)\(2\)\(-2\)\(3\)\(-3\)\(6\)\(-6\)
\(n\)\(1\)\(\frac{1}{2}\)\(\frac{5}{4}\)\(\frac{1}{4}\)\(\frac{3}{2}\)\(0\)\(\frac{9}{4}\)\(\frac{-3}{4}\)

Vì \(n\inℤ\) nên \(n\left\{0;1\right\}\)

Vậy \(n\in\left\{0;1\right\}\) thì A có giá trị nguyên 

Chúc bạn học tốt ~ 

7 tháng 4 2018

\(b)\) Ta có : 

\(A=\frac{8n}{4n-3}=2+\frac{6}{4n-3}\) ( câu a mình có phân tích rùi ) 

Để A đạt GTNN thì \(\frac{6}{4n-3}\) phải đạt GTNN hay \(4n-3< 0\) và đạt GTLN 

\(\Rightarrow\)\(4n-3=-1\)

\(\Leftrightarrow\)\(4n=2\)

\(\Leftrightarrow\)\(n=\frac{1}{2}\) ( loại vì n là số nguyên ) 

\(\Rightarrow\)\(4n-3=-2\)

\(\Leftrightarrow\)\(4n=1\)

\(\Leftrightarrow\)\(\frac{1}{4}\)

\(\Rightarrow\)\(4n-3=-3\)

\(\Leftrightarrow\)\(4n=0\)

\(\Leftrightarrow\)\(n=0\)

Suy ra : 

\(A=\frac{8n}{4n-3}=\frac{8.0}{4.0-3}=\frac{0}{0-3}=0\)

Vậy \(A_{min}=0\) khi \(n=0\)

Chúc bạn học tốt ~ 

29 tháng 7 2016

Với n = 1 thì 1! = 1 = 1² là số chính phương . 
Với n = 2 thì 1! + 2! = 3 không là số chính phương 
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương 
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương . 
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.

29 tháng 10 2018

2) Vì p là số nguyên tố nên ta xét các trường hợp sau:

a) Với p = 2 thì p + 10 = 2 + 10 = 12 là hợp số (loại), tương tự với p + 20 cũng là hợp số.

Với p = 3 thì p + 10 = 3 + 10 = 13 là số nguyên tố (nhận); p + 20 = 3 + 20 = 23 là số nguyên tố (nhận)

Vì p là số nguyên tố và p > 3 nên p có dạng 3k + 1; 3k + 2

Với p = 3k + 1 => p + 10 = 3k + 1 + 10 = 3k + 11

9 tháng 12 2015

Giả sử n^2 + 2006 = m^2 (m,n la số nguyên) 
Suy ra n^2 - m^2 =2006

<==> ( n - m )( n + m ) = 2006 
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên) 
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1) 
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn

==> a và b phải cùng chẵn hoặc cùng lẻ(2) 
Từ (1) và (2) suy ra a và b đều là số chẵn 
Suy ra a = 2k , b= 2l ( với k,l là số nguyên) 
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006 
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4) 
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)