Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có: 2n-7=2n+6-13=2(n+3)-13
Nhận thấy, 2(n+3) chia hết cho n+3 với mọi n
=> Để 2n-7 chia hết cho n+3 => 13 chia hết cho n+3
=> n+3=(-13,-1,1,13)
n+3 | -13 | -1 | 1 | 13 |
n | -16 | -4 | -2 | 10 |
bài 1:
a)<=>(n-1)+4 chia hết n-1
=>4 chia hết n-1
=>n-1\(\in\){-1,-2,-4;1,2,4}
=>n\(\in\){0,-1,-3,2,3,5}
b)<=>2(2n+1)+2 chia hết 2n+1
=>4 chia hết 2n+1
=>2n+1\(\in\){-1,-2,-4,1,2,4}
=>n\(\in\){-1;-3;-7;3;5;9}
bài 3 : <=>2y+8+xy+4x-1y-4=11
=>(8-4)+(2y-1y)+xy+4x=11
=>4+1y+x.y+x.4=11
=>1y+x.(x+y)=11-4
=>y+x.x+y=8
=>(x+y)^2=8
=>x+y=3
=>x và y là các số có tổng =3 ( bn tự liệt kê nhé )
mik chi la dc cau 2 thui
goi d la uoc chung cua (20n+9;30n+13)
(20n+9)chia het cho d (30n+13)chiahet cho d
(GIANG BAI:sau khi tinh ngoai nhap: UCLN cua (20n+9;30n+13) la 60)
luu y:ban ko ghi phan giang bai vao tap
3(20n+9) - 2(30n+13)
(60n+27) - (60n+26)
con 1 chia het d
suy ra:d thuoc U(1)={1}
suy ra:UCLN(20n+9 va 30n+13)=1
vay:20n+9 va 30n+13 la2 so nguyen cung nhau
chu thich:ban vui long thay chu suy ra bang dau suy ra trong toan hoc va thay chua chia het bang dau chia het trong toan hoc
câu 1:
Ta có :2n-1=2(n-3)+5
Để 2(n-3)+5 chia hết cho 2n-3 thì n-3 thuộc Ư(5) *vì 2(n-3) chia hết cho n-3*
Mà Ư(5)={1;-1;5;-5}
Ta có bảng sau:
n-3 -5 -1 1 5
n -2 2 4 8
Vậy n thuộc {-2;2;4;8}
a,2n+1 chia hết cho n-5
2n-10+11 chia hết cho n-5
Suy ra n-5 thuộc Ư[11]
......................................................
tíc giùm mk nha
n + 5 chia hết cho n - 2
n - 2 + 7 chia hết cho n - 2
Mà n - 2 chia hết cho n - 2
=> 7 chia hết cho n - 2
n - 2 thuộc Ư(7) = {-7 ; -1 ; 1 ; 7}
n - 2 = -7 => n = -5
n - 2 =-1 => N = 1
n - 2 = 1 => n = 3
n - 2 = 7 => n = 9
Vậy n thuộc {-5 ; 1 ; 3 ; 9}
2n + 1 chia hết cho n - 5
2n - 10 + 11 chia hết cho n - 5
Mà 2n + 10 chia hết cho n- 5
=> 11 chia hết cho n - 5
n - 5 thuộc Ư(11) = {-11 ; -1 ; 1 ; 11}
n - 5 = -11 => n =-6
n - 5 = -1 => n = 4
n - 5 = 1 => n = 6
n - 5 =11 => n = 16
Vậy n thuộc {-6 ; 4 ; 6 ; 16}
p/s : kham khảo
Ta có:
n+5 = n - 2 + 7
mà n - 2 chia hết cho n - 2
nên suy ra 7 phải chia hết cho n - 2
suy ra n-2 thuộc ước của 7
xét các trường hợp
Vì ( n + 5 ) ⋮ ( n - 2 ) ⇒ [ ( n - 2 ) + 7 ] ⋮ ( n - 2 )
Vì ( n - 2 ) ⋮ ( n - 2 ) . Để [ ( n - 2 ) + 7 ] ⋮ ( n - 2 ) khi và chỉ khi 7 ⋮ ( n - 2 ) ⇒ ( n - 2 ) ∈ Ư ( 7 )
Ư ( 7 ) = { - 7 ; - 1 ; 1 ; 7 }
⇒ n - 2 ∈ { -7 ; - 1 ; 1 ; 7 }
⇒ n ∈ { - 5 ; 1 ; 3 ; 9 }
Ta có : \(2n-1⋮n-3\)
\(\Leftrightarrow2n-6+5⋮n-3\)
Thấy \(2n-6=2\left(n-3\right)⋮n-3\)
\(\Rightarrow5⋮n-3\)
- Để 5 chia hết cho n - 3 <=> \(n-3\inƯ_{\left(5\right)}\)
\(\Leftrightarrow n-3\in\left\{1;-1;5;-5\right\}\)
\(\Leftrightarrow n\in\left\{4;2;8;-2\right\}\)
Vậy ...
Tìm số tự nhiên n thuộc N sao cho:
n+6 chia hết cho n+2
2n + 3 chia hết cho n-2
3n+1 chia hết cho 11-2n
-Xét hiệu (n + 6) - (n +2)
= n + 6 + n - 2
= 4 (khử n)
Nếu n +6 chia hết cho n+ 2 thì 4 phải chia hết cho n+2..
Suy ra: n + 2 \(_{ }\in\) Ư(4) = { 1 ; 2 ; 4} Mà n+2 \(\ge\) 2 nên n+2 \(\in\) { 2 ; 4}
+ n + 2 = 2
n = 2 - 2
n = 0
+ n + 2 = 4
n = 4 - 2
n = 2
Vậy n\(\in\) { 0 ; 2}
-Xét 2(n -2) \(⋮\) n - 2. Vậy 2(n - 2) = 2n - 4
Xét tổng (2n + 3) + (2n - 4)
= 2n + 3 + 2n - 4
= 7 (khử 2n)
Nếu 2n +3 \(⋮\) n - 2 thì 7 \(⋮\) n - 2.
n- 2 \(\in\) Ư(7) = { 1 ; 7}
+ n - 2 = 1
n = 1+2
n = 3
+n - 2 = 7
n = 7 +2
n = 9
Vậy n \(\in\)
n+6\(⋮\)n+2
n+2\(⋮\)n+2
n+6-n+2\(⋮\)n+2
8\(⋮\)n+2
\(\Rightarrow\)n+2={1,2,4,8}
\(\Rightarrow\)n={-1,0,2,6}
vi n\(\in\)N nen n={0,2.6}
2n+3\(⋮\)n-2
2(n-2)\(⋮\)n-2
2n+3-2(n-2)\(⋮\)n-2
2n+3-2n+4\(⋮\)n-2
7\(⋮\)n-2
\(\Rightarrow\)n-2={1,7}
\(\Rightarrow\)n={3,10}
3n+1\(⋮\)11-2n
2(3n+1)\(⋮\)11-2n
11-2n\(⋮\)11-2n
3(11-2n)\(⋮\)11-2n
2(3n+1)+3(11-2n)\(⋮\)11-2n
6n+2+33-6n\(⋮\)11-2n
35\(⋮\)11-2n
\(\Rightarrow\)11-2n={1,5,7,35}
\(\Rightarrow\)2n={12,16,18,46}
\(\Rightarrow\)n={6,8,9,23}
Kí hiệu chia hết là ":" nhé!
( 2n-3) : (n+1)
=> (2n +2 -5) : (n+1)
=> [(2n+2) -5] : (n+1)
=> [2.( n+1) +( -5) ] : (n+1)
=> -5 : n+1
=> (n+1) thuộc Ư(-5) ={ -5;-1;5;1}
=> n = { -6; -2 ; 4 ; 0}