K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2017

867y437ghhgfgg

29 tháng 11 2015

a) nếu k=1

=>11.1=11 là số nguyên tố 

nếu k=2,3,4,...... thì p.11 sẽ có nhiều hơn hai ước =>là hớp ố =>loại 

vậy k=1

b)

k=2=>k+6=2+6=8 là hợp số =>loại

k=3=>k+6=3+6=9 là hợp số => loại

k=5=>k+6=11 ;k+8=13;k+12=17kk+14=19 là số nguyên tố => chọn

nếu k>5

=>k có dạng 5p+1;5p+2;5p+3;5p+4

nếu k=5p+1

=>k+14=5p+1+14=5p+15=5(p+3) chia hết cho 5 => loại 

nếu k=5p+2

=>5p+8=5p+2+8=5p+10=5(p+2) chia hết cho 5 =>loại

nếu k=5p+3

=>k+2=5p+5 chia hết cho 5 => loại

nếu k=5p+4

=>k+6=5p+10 =5(p+2) chia hết cho 5 =>loại 

vậy p=5

1 tháng 12 2015

Vì  là số nguyên tố nên nên 

Nếu k=2=> k+2=4 là hợp số 

Nếu k=3 => k+2=5; k+4=7 đều là hợp số

Vậy k=3

 

1 tháng 12 2015

a﴿ Điều kiện: k>0

Số nguyên tố là số có hai ước tự nhiên 1 và chính nó. Mà 11 là số nguyên tố

11k có các ước: 1,k và 11 ﴾vẫn còn nếu k là hợp số﴿

Buộc k phải bằng 1 để thõa mãn yêu cầu đề bài 

b) ﴿ Vì k là số tự nhiên nên :

 Nếu k = 0 thì 7 . k = 0, không phải số nguyên tố.

 Nếu k = 1 thì 7 . k = 7, là số nguyên tố.

 Nếu k ≥ 2 thì 7 . k ∈ B﴾7﴿, không phải số nguyên tố.

Vậy k = 1 thỏa mãn đề bài

câu c tương tự câu b

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp sốBài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhấtBài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ướcBài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng...
Đọc tiếp

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002 
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố

Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p

2
4 tháng 8 2017

K MIK NHA BN !!!!!!

B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1 
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1 

* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số 

* xét p nguyên tố khác 3 => 8p không chia hết cho 3 
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3 
=> (8p-1)(8p+1) chia hết cho 3 

Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số  

B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1) 
* Xét k = 1 
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2) 
* Xét k lẻ mà k > 1 
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn 
=> k + 1 là hợp số 
=> Dãy số không có nhiều hơn 2 số nguyên tố (3) 
* Xét k chẵn , khi đó k >= 2 
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn 
=> k + 2 và k + 10 là hợp số 
=> Dãy số không có nhiều hơn 1 số nguyên tố (4) 
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất

B3:Số 36=(2^2).(3^2)

Số này có 9 ước là:1;2;3;4;6;9;12;18;36

Số tự nhiên nhỏ nhất có 6 ước là số 12.

Cho tập hợp ước của 12 là B.

B={1;2;3;4;6;12}

K MIK NHA BN !!!!!!

4 tháng 8 2017

cảm ơn bạn nha

mình k cho ban roi do