Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(3n+1⋮11-2n\)
Mà \(-2n+11⋮11-2n\)
\(\Leftrightarrow\hept{\begin{cases}6n+2⋮11-2n\\-6n+33⋮11-2n\end{cases}}\)
\(\Leftrightarrow35⋮11-2n\)
\(\Leftrightarrow11-2n\inƯ\left(35\right)\)
Tự xét tiếp!
b/ \(n^2+3⋮n-1\)
Mà \(n-1⋮n-1\)
\(\Leftrightarrow\hept{\begin{cases}n^2+3⋮n-1\\n^2-n⋮n-1\end{cases}}\)
\(\Leftrightarrow n+3⋮n-1\)
Mà \(n-1⋮n-1\)
\(\Leftrightarrow4⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(4\right)\)
\(\Leftrightarrow\) Ta có các trường hợp :
+) n - 1 = 1 => n = 2
+) n - 1 = 2 => n = 3
+) n = 1 = 4 => n = 5
Vậy ...
Gợi ý :
a) 7 chia hết cho n
b) 5 chia hết cho n-2
c) 2 chia hết cho n+1
d)17 chia hết cho
a)3n+7:n=\(3\frac{7}{n}\) đêr 3n+7 chia hết cho n thì 7 phải chia hết cho n
mà n thuộc N nên n=7 hoặc n=1
b) 2n+3:n-2\(\frac{2n-4+7}{n-2}=2\frac{7}{n-2}\) để 2n+3 chia hết cho n-2 thì n-2 phải thuộc ước của 7
mà n thuộc N nên n-2=7 hoắc n-2=1
=> n=9 hoặc n=3
c) n+3 :n+1=\(\frac{n+1+2}{n+1}=1\frac{2}{n+1}\) để n+3 chia hết cho n+1 thì n+1 phải thuộc ước của 2
mà n thuộc N nên n+1=2 hoặc n+1=1
=> n=1 hoặc n=0
d) 3n+1:11-2n=