Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đê A là số nguyên thì n+2 chia hết cho n-5 và n-5 chia hết cho n-5
=>n+2-(n-5) chia hết cho n-5
<=>n+2-n+5 chia hết cho n-5
<=> 7 chia hết cho n-5
=> n-5 thuộc {-1;1;-7;7}
<=>n thuộc {4;5;-2;12}
Ta có : \(\frac{a}{b}-\frac{a+n}{b+n}=\frac{ab+an-ab-bn}{b\left(b+n\right)}=\frac{n\left(a-b\right)}{b\left(b+n\right)}\)
Ta có mẫu gồm các chữ số > 0=> mẫu dương: n> 0. Nếu a > b => a - b > 0 <=> \(\frac{n\left(a-b\right)}{b\left(b+n\right)}>0=>\frac{a}{b}>\frac{a+n}{b+n}\)
Nếu a < b <=> a - b < 0 => \(\frac{n\left(a-b\right)}{b\left(b+n\right)}< 0=>\frac{a}{b}< \frac{a+n}{b+n}\)
Vậy đó mik nha
Ta có:
\(\frac{a}{b}\)=\(\frac{a\left(b+n\right)}{b\left(b+n\right)}\)=\(\frac{ab+an}{b\left(b+n\right)}\)
\(\frac{a+n}{b+n}\)=\(\frac{\left(a+n\right)b}{\left(b+n\right)b}\)=\(\frac{ab+bn}{b\left(b+n\right)}\)
Vì n \(\in\)N nên n có thể bằng 0.
Nếu n=0 => \(\frac{a+n}{b+n}\)=\(\frac{a+0}{b+0}\)=\(\frac{a}{b}\)
Theo đề ta có:
a > b => ab+an>ab+bn
=> \(\frac{a}{b}\)>\(\frac{a+n}{b+n}\)
\(125.5>5^n>5.25\)
=> \(5^3.5>5^n>5.5^2\)
=>\(5^4>5^n>5^3\)
=> \(4>n>3\)
=> \(n=2\)
Chúc bạn Hk tốt!!!
125x5=625>5n>5x25=125
54>5n>53=>n ko tồn tại