K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2017

a) \(\frac{4n+1}{2n-1}=\frac{4n-2+3}{2n-1}=\frac{2.\left(2n-1\right)+3}{2n-1}\)

\(=2+\frac{3}{2n-1}\). Vì \(2\in Z\Rightarrow\frac{3}{2n-1}\in Z\Rightarrow2n-1\inƯ\left(3\right)\)

\(\Rightarrow2n-1\in\left\{-3;-1;1;3\right\}\)

\(\Rightarrow2n\in\left\{-2;0;2;4\right\}\)

\(\Rightarrow n\in\left\{-1;0;1;2\right\}\)

b)\(\frac{2n+5}{n+2}=\frac{2n+4+1}{n+2}=\frac{2.\left(n+2\right)+1}{n+2}\)

\(=\frac{2.\left(n+2\right)}{n+2}+\frac{1}{n+2}=2+\frac{1}{n+2}\). Vì \(2\in Z\Rightarrow n+2\inƯ\left(1\right)\)

\(\Rightarrow n+2\in\left\{-1;1\right\}\)

\(\Rightarrow n\in\left\{-3;-1\right\}\)

c) \(\frac{2n-3}{n-2}=\frac{2n-4+1}{n-2}=\frac{2.\left(n-2\right)+1}{n-2}\)

\(=\frac{2.\left(n-2\right)}{n-2}+\frac{1}{n-2}=2+\frac{1}{n-2}\)

Vì \(2\in Z\Rightarrow\frac{1}{n-2}\in Z\Rightarrow n-2\inƯ\left(1\right)\)

\(\Rightarrow n-2\in\left\{-1;1\right\}\)

\(\Rightarrow n\in\left\{1;3\right\}\)

26 tháng 9 2017

Ta có: \(4n+1⋮2n-1\Leftrightarrow4n-2+3⋮2n+1\)\(\Leftrightarrow2\left(2n-1\right)+3⋮2n-1\Leftrightarrow3⋮2n-1\)

\(\Rightarrow2n-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

\(\Rightarrow2n=\left\{-2;0;2;4\right\}\)

Vì \(n\in N\)nên \(n=\left\{0;1;2\right\}\)

6 tháng 1 2019

a) 2n - 4 ⋮ n - 3

2n - 6 + 2 ⋮ n - 3

2( n - 3 ) + 2 ⋮ n - 3

Vì 2( n - 3 ) ⋮ n - 3

=> 2 ⋮ n - 3

=> n - 3 thuộc Ư(2) = { 1; -1; 2; -2 }

=> n thuộc { 4; 2; 5; 1 }

Vậy,......

- Các câu còn lại tương tự

6 tháng 1 2019

\(a,2n-4⋮n-3\Leftrightarrow2n-6+2⋮n-3\)

\(\Leftrightarrow2\left(n-3\right)+2⋮n-3\Leftrightarrow2⋮n-3\left(n-3\inℤ\right)\)

\(\Leftrightarrow n-3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)\(\Leftrightarrow n\in\left\{2;4;1;5\right\}\)

Vậy \(n=1;2;4;5\)

13 tháng 2 2016

a) n+5 chia hết cho n-1

Ta có: n+5 = (n-1)+6 

=> n-1  và 6 cùng chia hết cho n-1 hay n-1\(\in\)Ư(6)={-1;1;-2;2;-3;3;-6;6}

=> n\(\in\){0;2;-1;3;-2;4;-5;7}

b) n+5 chia hết cho n+2

Ta có: n+5 = (n+2)+3 

=> n+2  và 3 cùng chia hết cho n+2 hay n+2\(\in\)Ư(3)={-1;1;-3;3;}

=> n\(\in\){-3;-1;-5;1;}

c) 2n-4 chia hết cho n+2

Ta có: 2n-4 = 2(n+2)-8

=> 2(n+2) và 8 cùng chia hết cho n+2 hay n+2\(\in\)Ư(8)={-1;1;-2;2;-4;4;-8;8}

=> n\(\in\){-3;-1;-4;0;-6;2;-10;6}

d) 6n+4 chia hết cho 2n+1

Ta có: 6n+4 = 3(2n+1)+1 

=> 3(2n+1) và 1 cùng chia hết cho 2n+1 hay 2n+1\(\in\)Ư(1)={-1;1;}

=> n\(\in\){-1;0}

e) 3-2n chia hết cho n+1

Ta có: 3-2n= -2(1+n)+5 

=> -2(1+n) và 5 cùng chia hết cho n+1 hay n+1\(\in\)Ư(5)={-1;1;-5;5;}

=> n\(\in\){-2;0;-6;4;}

8 tháng 10 2017

a) (n+2) \(⋮\) (n-1)

vì (n-1)\(⋮\) (n-1)

=>(n+2)-(n-1)\(⋮\left(n-1\right)\)

=>(n+2-n+1)\(⋮\) (n-1)

=> 3\(⋮\) (n-1)

=>(n-1)\(\in\) Ư(3) = { \(\pm\)1,\(\pm\)3}

ta có bảng

n-1 -1 1 -3

3

n 0 2 -2 4
loại

vậy n\(\in\) { 0;2;4}

8 tháng 10 2017

b) \(\left(2n+7\right)⋮\left(n+1\right)\)

\(\left(n+1\right)⋮\left(n+1\right)\)

=>\(2\left(n+1\right)⋮\left(n+1\right)\)

=> \(\left(2n+2\right)⋮\left(n+1\right)\)

=>\(\left(2n+7\right)-\left(2n+2\right)⋮\left(n+1\right)\)

=>\(\left(2n+7-2n-2\right)⋮\left(n+1\right)\)

=>\(5⋮\left(n+1\right)\)

=> \(\left(n+1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

TA CÓ BẢNG

n+1 -5 -1 1 5
n -6 -2 0 4
loại loại

vậy \(n\in\left\{0;4\right\}\)

28 tháng 10 2017

a,      n + 3 \(⋮\)n - 2

\(\Rightarrow\) n + 3 - n + 2 \(⋮\)n - 2

\(\Rightarrow\)\(⋮\) n - 2

\(\Rightarrow\) n \(\in\){3; 1; 7; -3 }

CÁC PHẦN TIẾP THEO THÌ TƯƠNG TỰ

30 tháng 7 2021

 . .......................................................................................................................................jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

1 tháng 1

Tự làm đi, chắc là BTVN được giao hả, phải luyện