\(\frac{3n}{5-2n}\)rút gọn được

Giúp mk giả nhanh bài này vớ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2018

Để phân số \(\frac{2n-1}{3n+2}\)rút gọn được thì ƯCLN(2n-1;3n+2) \(\ne1\)

Ta có : Gọi ƯCLN(3n+2;2n-1) là d

3n + 2 chia hết cho d 

2(3n+2) = 6n+4 chia hết cho d

2n-1 chia hết cho d 

3(2n-1) =6n-3 chia hết cho d

=> (6n+4)-(6n-3) = 7 chia hết cho d

Hay d thuộc Ư(7) = { 1;-1;7;-7}

=> 2n - 1 = 1;-1;7;-7

3n+2=1;-1;7;-7 

Tự tính phần còn lại nhé

24 tháng 1 2018

1 trên n+2

9 tháng 3 2017

OOOOOOOOOOOOOOOOOOOOOO

25 tháng 6 2018

Ta có:

2n-1 chia hết cho 3n+2

=>3n+2-n-3 chia hết cho 3n+2

=>n-3 chia hết cho 3n+2

=>3n+2-5-2n chia hết cho 3n+2

=> 5+2n chia hết cho 3n+2

=>5+2n-(2n-1) chia hết cho 3n+2

=>6 chia hết cho 3n+2

Ta có bảng sau;

3n+21236-1-2-3-6
n-0.300.31.3-1-1.3-1.6-2.6

vì n là số nguyên ta chỉ tìm được hai giá trị của n

thử lại thay n=0 (loại) -1/2 không rút gọn được

thay n=-1 (chọn) -3/-1 rút gọn được

vậy ta chỉ tìm được 1 giá trị của n thỏa mãn yêu cầu đề bài với n=-1

31 tháng 1 2018

a) Gọi d là ƯCLN(n, n + 1), d ∈ N*

\(\Rightarrow\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)

\(\Rightarrow\left(n+1\right)-n⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(n,n+1\right)=1\)

\(\Rightarrow\) \(\frac{n}{n+1}\) là phân số tối giản.

b) Gọi d là ƯCLN(n + 1, 2n + 3), d ∈ N*

\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}}\)

\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(n+1,2n+3\right)=1\)

\(\Rightarrow\) \(\frac{n+1}{2n+3}\) là phân số tối giản.

31 tháng 1 2018

c) Gọi d là ƯCLN(21n + 4, 14n + 3), d ∈ N*

\(\Rightarrow\hept{\begin{cases}21n+4⋮d\\14n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(21n+4\right)⋮d\\3\left(14n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}42n+8⋮d\\42n+9⋮d\end{cases}}}\)

\(\Rightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(21n+4,14n+3\right)=1\)

\(\Rightarrow\) \(\frac{21n+4}{14n+3}\) là phân số tối giản.

d) Gọi d là ƯCLN(2n + 3, 3n + 5), d ∈ N*

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+5\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}}}\)

\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(2n+3,3n+5\right)=1\)

\(\Rightarrow\) \(\frac{2n+3}{3n+5}\) là phân số tối giản.

Bài 1 .

a) Gọi d \(\in\)ƯC ( n + 1 , 2n + 3 ) . Ta có :

2n + 3 - 2( n + 1 ) \(⋮\)cho d

\(\Rightarrow\)1 chia hết cho d => d = + , - 1

b ) Gọi d \(\in\)ƯC ( 2n + 3 , 4n + 8 ) . Ta có :

4n + 8 - 2( 2n + 3 ) \(⋮\)cho d

\(\Rightarrow\)2 chia hết cho d . Do đó d là Ư của số lẻ 2n + 3 nên d = + , - 1

c ) Xét buểu thức 5( 3n + 2 ) - 3( 5n + 3 ).

3 tháng 11 2019

a) Ta có: \(n+15⋮n-3\)

\(\Rightarrow\left(n-3\right)+18⋮n-3\)

\(\Rightarrow18⋮n-3\)(vì \(n-3⋮n-3\))

\(\Rightarrow n-3\inƯ\left(18\right)\)

\(\Rightarrow n-3\in\left\{1;2;3;6;9;18\right\}\)

\(\Rightarrow n\in\left\{4;5;6;9;12;21\right\}\)

Do n > 5 nên:

\(\Rightarrow x\in\left\{6;9;12;21\right\}\)

3 tháng 11 2019

Cảm ơn nk

10 tháng 2 2017

được j bạn

27 tháng 2 2018

Để chứng minh phân số đó tối giản, ta phải chứng minh được chúng là 2 số nguyên tố cùg nhau

Tham khảo :

Gọi d = ƯCLN ( 2n + 3 ; 3n + 5 )

=> 2n + 3 chia hết cho d

3n + 5 chia hết cho d

=> 3 ( 2n + 3 ) chia hết cho d

2 ( 3n + 5 ) chia hêt cho d

=> 6n + 9 và 6n + 10 chia hết cho d

=> 1 chia hết cho d => d = 1

=> 2n + 3 và 3n + 5 là 2 số nguyên tố cùng nhau

Vậy phân số 2n + 3 / 3n + 5 là phân số tối giản

27 tháng 2 2018

Gọi d là ƯC(2n+3; 3n+5)

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+5\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}}}\)

\(\Rightarrow\left(6n+9\right)-\left(6n+10\right)⋮d\)

\(\Rightarrow6n+9-6n-10⋮d\)

\(\Rightarrow\left(6n-6n\right)-\left(10-9\right)⋮d\)

\(\Rightarrow0-1⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d\inƯC\left(1\right)=\left\{-1;1\right\}\)

\(\Rightarrow\frac{2n+3}{3n+5}\) là phân số tối giản