Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình chỉ làm câu b thôi
b, Để A là số tự nhiên => \(\frac{63}{3n+1}\)
\(\Rightarrow3n+1\inƯ(63)\) \((1)\)
Mà \(n\in N\)=> \(3n+1\in N\) \((2)\)
Từ 1 và 2 => \(3n+1\in\left\{1;7\right\}\)
- Nếu 3n + 1 = 1 => 3n = 0 => n = 0
- Nếu 3n + 1 = 7 => 3n = 6 => n = 2
Vậy : \(\hept{\begin{cases}n=6\\n=2\end{cases}}\)
Để A rút gọn được \(\Leftrightarrow\) 63 và 3n + 1 phải có ước chung .
Có 63 = 32 . 7 \(\Rightarrow\) 3n + 1 có ước là 3 hoặc 7 .
Vì 3n + 1 \(⋮̸̸\)3 => 3n + 1 có ước là 7
\(\Rightarrow\) 3n + 1 = 7k ( k \(\in\)N )
\(\Rightarrow\) 3n = 7k - 1
\(\Rightarrow\)n = \(\frac{7k-1}{3}\)
\(\Rightarrow\)n = \(\frac{6k+k-1}{3}\)
\(\Rightarrow\)n = 2k + \(\frac{k-1}{3}\)
Để n \(\in\)N \(\Rightarrow\)\(\frac{k-1}{3}\)\(\in\)N \(\Rightarrow\)k = 3a + 1 ( a \(\in\)N )
\(\Rightarrow\) \(n=\frac{7\left(3a+1\right)-1}{3}=\frac{21a+7-7}{3}=\frac{21a+6}{3}=\frac{21a}{3}+\frac{6}{3}=7a+2\)
Vậy n có dạng 7a + 2 thì A rút gọn được .
Ta có:
2n-1 chia hết cho 3n+2
=>3n+2-n-3 chia hết cho 3n+2
=>n-3 chia hết cho 3n+2
=>3n+2-5-2n chia hết cho 3n+2
=> 5+2n chia hết cho 3n+2
=>5+2n-(2n-1) chia hết cho 3n+2
=>6 chia hết cho 3n+2
=> 3n+2 E Ư ( 6) = {-1 ; 1; 2; -2; 3; -3; 6; -6 }
Lập bảng xét từng TH là ra
Lời giải:
Gọi $d=ƯCLN(2n-1, 3n+2)$
$\Rightarrow 2n-1\vdots d; 3n+2\vdots d$
$\Rightarrow 2(3n+2)-3(2n-1)\vdots d$
$\Rightarrow 7\vdots d$
Để phân số đã cho rút gọn được thì $d>1$
Mà $7\vdots d\Rightarrow d=7$
Để điều này xảy ra thì $2n-1\vdots 7$
$\Rightarrow 2n-1-7\vdots 7$
$\Rightarrow 2n-8\vdots 7$
$\Rightarrow 2(n-4)\vdots 7$
$\Rightarrow n-4\vdots 7\Rightarrow n=7k+4$ với $k$ nguyên.
Vậy $n$ có dạng $7k+4$ với $k$ nguyên
a, B rút gọn đc <=> 3n+1 chia hết cho các ước nguyên tố của 63
đó chính là : 3 và 7 dễ thấy 3n+1 chia 3 dư 1 nên: 3n+1 chia hết cho 7 để rút gọn được
3n+1 chia hết cho 7 => 3n+15 chia hết cho 7=>3(n+5) chia hết cho 7 vì (7;3)=1
nên n+5 chia hết cho 7 => n=7k+2 (k E N)
b, B nguyên <=> 63 chia hết cho 3n+1 => 3n+1 là ước chia 3 dư 1 của 63
=> 3n+1 E {1;7}=>3n E {0;6}=>n E {0;2}
Vậy với n=0 hoặc: n=2 thì B nguyên
a, B rút gọn đc <=> 3n+1 chia hết cho các ước nguyên tố của 63
đó chính là : 3 và 7 dễ thấy 3n+1 chia 3 dư 1 nên: 3n+1 chia hết cho 7 để rút gọn được
3n+1 chia hết cho 7 => 3n+15 chia hết cho 7=>3(n+5) chia hết cho 7 vì (7;3)=1
nên n+5 chia hết cho 7 => n=7k+2 (k E N)
b, B nguyên <=> 63 chia hết cho 3n+1 => 3n+1 là ước chia 3 dư 1 của 63
=> 3n+1 E {1;7}=>3n E {0;6}=>n E {0;2}
Vậy với n=0 hoặc: n=2 thì B nguyên
khó
kho thi dug co ma vo day